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Abstract

The problem is sequence prediction in the following setting. A sequence x1, . . . , xn, . . .
of discrete-valued observations is generated according to some unknown probabilistic law
(measure) µ. After observing each outcome, it is required to give the conditional proba-
bilities of the next observation. The measure µ belongs to an arbitrary but known class C
of stochastic process measures. We are interested in predictors ρ whose conditional prob-
abilities converge (in some sense) to the “true” µ-conditional probabilities, if any µ ∈ C
is chosen to generate the sequence. The contribution of this work is in characterizing the
families C for which such predictors exist, and in providing a specific and simple form in
which to look for a solution. We show that if any predictor works, then there exists a
Bayesian predictor, whose prior is discrete, and which works too. We also find several
sufficient and necessary conditions for the existence of a predictor, in terms of topological
characterizations of the family C, as well as in terms of local behaviour of the measures in
C, which in some cases lead to procedures for constructing such predictors.

It should be emphasized that the framework is completely general: the stochastic pro-
cesses considered are not required to be i.i.d., stationary, or to belong to any parametric
or countable family.

Keywords: sequence prediction, time series, online prediction, Bayesian prediction

1. Introduction

Given a sequence x1, . . . , xn of observations xi ∈ X , where X is a finite set, we want to
predict what are the probabilities of observing xn+1 = x for each x ∈ X , or, more generally,
probabilities of observing different xn+1, . . . , xn+h, before xn+1 is revealed, after which the
process continues. It is assumed that the sequence is generated by some unknown stochastic
process µ, a probability measure on the space of one-way infinite sequences X∞. The goal is
to have a predictor whose predicted probabilities converge (in a certain sense) to the correct
ones (that is, to µ-conditional probabilities). In general this goal is impossible to achieve
if nothing is known about the measure µ generating the sequence. In other words, one
cannot have a predictor whose error goes to zero for any measure µ. The problem becomes
tractable if we assume that the measure µ generating the data belongs to some known class
C. The questions addressed in this work are a part of the following general problem: given
an arbitrary set C of measures, how can we find a predictor that performs well when the
data is generated by any µ ∈ C, and whether it is possible to find such a predictor at all.
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An example of a generic property of a class C that allows for construction of a predictor,
is that C is countable. Clearly, this condition is very strong. An example, important from
the applications point of view, of a class C of measures for which predictors are known, is
the class of all stationary measures. The general question, however, is very far from being
answered.

The contribution of this work to solving this question is, first, in that we provide a
specific form in which to look for a predictor. More precisely, we show that if a predictor
that predicts every µ ∈ C exists, then such a predictor can also be obtained as a weighted
sum of countably many elements of C. This result can also be viewed as a justification of
the Bayesian approach to sequence prediction: if there exists a predictor which predicts
well every measure in the class, then there exists a Bayesian predictor (with a rather simple
prior) that has this property too. In this respect it is important to note that the result
obtained about such a Bayesian predictor is pointwise (holds for every µ in C), and stretches
far beyond the set its prior is concentrated on. Next, we derive some characterizations of
families C for which a predictor exist. We first analyze what is furnished by the notion of
separability, when a suitable topology can be found: we find that it is a sufficient but not
always a necessary condition. We then derive some sufficient conditions for the existence
of a predictor which are based on local (truncated to the first n observation) behaviour
of measures in the class C. Necessary conditions cannot be obtained in this way (as we
demonstrate), but sufficient conditions, along with rates of convergence and construction of
predictors, can be found.

The motivation for studying predictors for arbitrary classes C of processes is two-fold.
First of all, prediction is a basic ingredient for constructing intelligent systems. Indeed, in
order to be able to find optimal behaviour in an unknown environment, an intelligent agent
must be able, at the very least, to predict how the environment is going to behave (or, to
be more precise, how relevant parts of the environment are going to behave). Since the re-
sponse of the environment may in general depend on the actions of the agent, this response
is necessarily non-stationary for explorative agents. Therefore, one cannot readily use pre-
diction methods developed for stationary environments, but rather has to find predictors
for the classes of processes that can appear as a possible response of the environment.

Apart from this, the problem of prediction itself has numerous applications in such
diverse fields as data compression, market analysis, bioinformatics, and many others. It
seems clear that prediction methods constructed for one application cannot be expected to
be optimal when applied to another. Therefore, an important question is how to develop
specific prediction algorithms for each of the domains.

1.1 Prior Work

As it was mentioned, if the class C of measures is countable (that is, if C can be represented
as C := {µk : k ∈ N}), then there exists a predictor which performs well for any µ ∈ C.
Such a predictor can be obtained as a Bayesian mixture ρS :=

∑
k∈Nwkµk, where wk are

summable positive real weights, and it has very strong predictive properties; in particular,
ρS predicts every µ ∈ C in total variation distance, as follows from the result of Blackwell
and Dubins (1962). Total variation distance measures the difference in (predicted and true)
conditional probabilities of all future events, that is, not only the probabilities of the next
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observations, but also of observations that are arbitrary far off in the future (see formal
definitions below). In the context of sequence prediction the measure ρS was first studied
by Solomonoff (1978). Since then, the idea of taking a convex combination of a finite or
countable class of measures (or predictors) to obtain a predictor permeates most of the
research on sequential prediction (see, for example, Cesa-Bianchi and Lugosi, 2006) and
more general learning problems (Hutter, 2005; Ryabko and Hutter, 2008a). In practice it
is clear that, on the one hand, countable models are not sufficient, since already the class
µp, p ∈ [0, 1] of Bernoulli i.i.d. processes, where p is the probability of 0, is not countable.
On the other hand, prediction in total variation can be too strong to require; predicting
probabilities of the next observation may be sufficient, maybe even not on every step but
in the Cesaro sense. A key observation here is that a predictor ρS =

∑
wkµk may be a

good predictor not only when the data is generated by one of the processes µk, k ∈ N, but
when it comes from a much larger class. Let us consider this point in more detail. Fix for
simplicity X = {0, 1}. The Laplace predictor

λ(xn+1 = 0|x1, . . . , xn) =
#{i ≤ n : xi = 0}+ 1

n+ |X |
(1)

predicts any Bernoulli i.i.d. process: although convergence in total variation distance of
conditional probabilities does not hold, predicted probabilities of the next outcome converge
to the correct ones. Moreover, generalizing the Laplace predictor, a predictor λk can be
constructed for the class Mk of all k-order Markov measures, for any given k. As was found
by Ryabko (1988), the combination ρR :=

∑
wkλk is a good predictor not only for the set

∪k∈NMk of all finite-memory processes, but also for any measure µ coming from a much
larger class: that of all stationary measures on X∞. Here prediction is possible only in the
Cesaro sense (more precisely, ρR predicts every stationary process in expected time-average
Kullback-Leibler divergence, see definitions below). The Laplace predictor itself can be
obtained as a Bayes mixture over all Bernoulli i.i.d. measures with uniform prior on the
parameter p (the probability of 0). However, as was observed in (Hutter, 2007) (and as is
easy to see), the same (asymptotic) predictive properties are possessed by a Bayes mixture
with a countably supported prior which is dense in [0, 1] (e.g., taking ρ :=

∑
wkδk where

δk, k ∈ N ranges over all Bernoulli i.i.d. measures with rational probability of 0). For a
given k, the set of k-order Markov processes is parametrized by finitely many [0, 1]-valued
parameters. Taking a dense subset of the values of these parameters, and a mixture of the
corresponding measures, results in a predictor for the class of k-order Markov processes.
Mixing over these (for all k ∈ N) yields, as in (Ryabko, 1988), a predictor for the class
of all stationary processes. Thus, for the mentioned classes of processes, a predictor can
be obtained as a Bayes mixture of countably many measures in the class. An additional
reason why this kind of analysis is interesting is because of the difficulties arising in trying
to construct Bayesian predictors for classes of processes that can not be easily parametrized.
Indeed, a natural way to obtain a predictor for a class C of stochastic processes is to take a
Bayesian mixture of the class. To do this, one needs to define the structure of a probability
space on C. If the class C is well parametrized, as is the case with the set of all Bernoulli
i.i.d. process, then one can integrate with respect to the parametrization. In general, when
the problem lacks a natural parametrization, although one can define the structure of the
probability space on the set of (all) stochastic process measures in many different ways, the
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results one can obtain will then be with probability 1 with respect to the prior distribution
(see, for example, Jackson et al., 1999). Pointwise consistency cannot be assured (see,
for example, Diaconis and Freedman, 1986) in this case, meaning that some (well-defined)
Bayesian predictors are not consistent on some (large) subset of C. Results with prior
probability 1 can be hard to interpret if one is not sure that the structure of the probability
space defined on the set C is indeed a natural one for the problem at hand (whereas if one
does have a natural parametrization, then usually results for every value of the parameter
can be obtained, as in the case with Bernoulli i.i.d. processes mentioned above). The
results of the present work show that when a predictor exists it can indeed be given as a
Bayesian predictor, which predicts every (and not almost every) measure in the class, while
its support is only a countable set.

A related question is formulated as a question about two individual measures, rather
than about a class of measures and a predictor. Namely, one can ask under which conditions
one stochastic process predicts another. In (Blackwell and Dubins, 1962) it was shown that
if one measure is absolutely continuous with respect to another, than the latter predicts the
former (the conditional probabilities converge in a very strong sense). In (Ryabko and Hut-
ter, 2007, 2008b) a weaker form of convergence of probabilities (in particular, convergence
of expected average KL divergence) is obtained under weaker assumptions.

1.2 The Results

First, we show that if there is a predictor that performs well for every measure coming
from a class C of processes, then a predictor can also be obtained as a convex combination∑

k∈Nwkµk for some µk ∈ C and some wk > 0, k ∈ N. This holds if the prediction quality
is measured by either total variation distance, or expected average KL divergence: one
measure of performance that is very strong, the other rather weak. The analysis for the
total variation case relies on the fact that if ρ predicts µ in total variation distance, then µ
is absolutely continuous with respect to ρ, so that ρ(x1..n)/µ(x1..n) converges to a positive
number with µ-probability 1 and with a positive ρ-probability. However, if we settle for a
weaker measure of performance, such as expected average KL divergence, measures µ ∈ C
are typically singular with respect to a predictor ρ. Nevertheless, since ρ predicts µ we
can show that ρ(x1..n)/µ(x1..n) decreases subexponentially with n (with high probability
or in expectation); then we can use this ratio as an analogue of the density for each time
step n, and find a convex combination of countably many measures from C that has desired
predictive properties for each n. Combining these predictors for all n results in a predictor
that predicts every µ ∈ C in average KL divergence. The proof techniques developed have a
potential to be used in solving other questions concerning sequence prediction, in particular,
the general question of how to find a predictor for an arbitrary class C of measures.

We then exhibit some sufficient conditions on the class C, under which a predictor for
all measures in C exists. It is important to note that none of these conditions relies on
a parametrization of any kind. The conditions presented are of two types: conditions on
asymptotic behaviour of measures in C, and on their local (restricted to first n observations)
behaviour. Conditions of the first type concern separability of C with respect to the total
variation distance and the expected average KL divergence. We show that in the case of
total variation separability is a necessary and sufficient condition for the existence of a
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predictor, whereas in the case of expected average KL divergence it is sufficient but is not
necessary.

The conditions of the second kind concern the “capacity” of the sets Cn := {µn : µ ∈ C},
n ∈ N, where µn is the measure µ restricted to the first n observations. Intuitively, if
Cn is small (in some sense), then prediction is possible. We measure the capacity of Cn
in two ways. The first way is to find the maximum probability given to each sequence
x1, . . . , xn by some measure in the class, and then take a sum over x1, . . . , xn. Denoting
the obtained quantity cn, one can show that it grows polynomially in n for some important
classes of processes, such as i.i.d. or Markov processes. We show that, in general, if cn grows
subexponentially then a predictor exists that predicts any measure in C in expected average
KL divergence. On the other hand, exponentially growing cn are not sufficient for prediction.
A more refined way to measure the capacity of Cn is using a concept of channel capacity from
information theory, which was developed for a closely related problem of finding optimal
codes for a class of sources. We extend corresponding results from information theory to
show that sublinear growth of channel capacity is sufficient for the existence of a predictor, in
the sense of expected average divergence. Moreover, the obtained bounds on the divergence
are optimal up to an additive logarithmic term.

The rest of the paper is organized as follows. Section 2 introduces the notation and
definitions. In Section 3 we show that if any predictor works than there is a Bayesian one
that works, while in Section 4 we provide several characterizations of predictable classes of
processes. Section 4.1 is concerned with separability, while Section 4.2 analyzes conditions
based on local behaviour of measures. Finally, Section 5 provides outlook and discussion.

As running examples that illustrate the results of each section we use countable classes
of measures, the family of all Bernoulli i.i.d. processes, and that of all stationary processes.

2. Preliminaries

Let X be a finite set. The notation x1..n is used for x1, . . . , xn. We consider stochastic
processes (probability measures) on (X∞,F), where F is the sigma-field generated by the
cylinder sets [x1..n], xi ∈ X , n ∈ N, where [x1..n] is the set of all infinite sequences that start
with x1..n. Since we are only interested in those measures on (X∞,F) which are probability
measures (the measure of X∞ equals 1), we call them simply measures. For a finite set A
denote |A| its cardinality. We use Eµ for expectation with respect to a measure µ.

Next we introduce the criteria of the quality of prediction used in this paper. For two
measures µ and ρ we are interested in how different the µ- and ρ-conditional probabilities
are, given a data sample x1..n. Introduce the (conditional) total variation distance

v(µ, ρ, x1..n) := sup
A∈F
|µ(A|x1..n)− ρ(A|x1..n)|.

Definition 1 We say that ρ predicts µ in total variation if

v(µ, ρ, x1..n)→ 0 µ-a.s.

This convergence is rather strong. In particular, it means that ρ-conditional probabilities
of arbitrary far-off events converge to µ-conditional probabilities. Moreover, ρ predicts µ
in total variation if (Blackwell and Dubins, 1962) and only if (Kalai and Lehrer, 1994) µ is
absolutely continuous with respect to ρ:
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Theorem 2 (Blackwell and Dubins, 1962; Kalai and Lehrer, 1994) If ρ, µ are ar-
bitrary probability measures on (X∞,F), then ρ predicts µ in total variation if and only if
µ is absolutely continuous with respect to ρ.

Thus, for a class C of measures there is a predictor ρ that predicts every µ ∈ C in
total variation if and only if every µ ∈ C has a density with respect to ρ. Although such
sets of processes are rather large, they do not include even such basic examples as the
set of all Bernoulli i.i.d. processes. That is, there is no ρ that would predict in total
variation every Bernoulli i.i.d. process measure δp, p ∈ [0, 1], where p is the probability of 0.
Therefore, perhaps for many (if not most) practical applications this measure of the quality
of prediction is too strong, and one is interested in weaker measures of performance.

For two measures µ and ρ introduce the expected cumulative Kullback-Leibler divergence
(KL divergence) as

dn(µ, ρ) := Eµ

n∑
t=1

∑
a∈X

µ(xt = a|x1..t−1) log
µ(xt = a|x1..t−1)
ρ(xt = a|x1..t−1)

.

In words, we take the expected (over data) average (over time) KL divergence between µ-
and ρ-conditional (on the past data) probability distributions of the next outcome.

Definition 3 We say that ρ predicts µ in expected average KL divergence if

1

n
dn(µ, ρ)→ 0.

This measure of performance is much weaker, in the sense that it requires good predictions
only one step ahead, and not on every step but only on average; also, the convergence is not
with probability 1, but in expectation. With prediction quality so measured, predictors exist
for relatively large classes of measures; most notably, Ryabko (1988) provides a predictor
which predicts every stationary process in expected average KL divergence. A simple but
useful identity that we will need (in the context of sequence prediction introduced also by
Ryabko, 1988) is the following

dn(µ, ρ) = −
∑

x1..n∈Xn
µ(x1..n) log

ρ(x1..n)

µ(x1..n)
, (2)

where on the right-hand side we have simply the KL divergence between measures µ and ρ
restricted to the first n observations.

Thus, the results of this work will be established with respect to two very different
measures of prediction quality, one of which is very strong and the other rather weak. This
suggests that the facts established reflect some fundamental properties of the problem of
prediction, rather than those pertinent to particular measures of performance. On the other
hand, it remains open to extend the results below to different measures of performance.

3. Fully Nonparametric Bayes Predictors

In this section we show that if there is a predictor that predicts every µ in some class C,
then there is a Bayesian mixture of countably many elements from C that predicts every
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µ ∈ C too. This is established for the two notions of prediction quality that were introduced:
total variation and expected average KL divergence. After the theorems we present some
examples of families of measures for which predictors exist.

Theorem 4 Let C be a set of probability measures on (X∞,F). If there is a measure ρ
such that ρ predicts every µ ∈ C in total variation, then there is a sequence µk ∈ C, k ∈ N
such that the measure ν :=

∑
k∈Nwkµk predicts every µ ∈ C in total variation, where wk

are any positive weights that sum to 1.

This relatively simple fact can be proven in different ways, relying on the mentioned equiv-
alence (Blackwell and Dubins, 1962; Kalai and Lehrer, 1994) of the statements “ρ predicts
µ in total variation distance” and “µ is absolutely continuous with respect to ρ.” The
proof presented below is not the shortest possible, but it uses ideas and techniques that
are then generalized to the case of prediction in expected average KL-divergence, which is
more involved, since in all interesting cases all measures µ ∈ C are singular with respect
to any predictor that predicts all of them. Another proof of Theorem 4 can be obtained
from Theorem 7 in the next section. Yet another way would be to derive it from algebraic
properties of the relation of absolute continuity, given in (Plesner and Rokhlin, 1946).

Proof We break the (relatively easy) proof of this theorem into three steps, which will
make the proof of the next theorem more understandable.

Step 1: densities. For any µ ∈ C, since ρ predicts µ in total variation, by Theorem 2, µ
has a density (Radon-Nikodym derivative) fµ with respect to ρ. Thus, for the (measurable)

set Tµ of all sequences x1, x2, ... ∈ X∞ on which fµ(x1,2,...) > 0 (the limit limn→∞
ρ(x1..n)
µ(x1..n)

exists and is finite and positive) we have µ(Tµ) = 1 and ρ(Tµ) > 0. Next we will construct
a sequence of measures µk ∈ C, k ∈ N such that the union of the sets Tµk has probability
1 with respect to every µ ∈ C, and will show that this is a sequence of measures whose
existence is asserted in the theorem statement.

Step 2: a countable cover and the resulting predictor. Let εk := 2−k and let m1 :=
supµ∈C ρ(Tµ). Clearly, m1 > 0. Find any µ1 ∈ C such that ρ(Tµ1) ≥ m1 − ε1, and let
T1 = Tµ1 . For k > 1 define mk := supµ∈C ρ(Tµ\Tk−1). If mk = 0 then define Tk := Tk−1,
otherwise find any µk such that ρ(Tµk\Tk−1) ≥ mk − εk, and let Tk := Tk−1 ∪ Tµk . Define
the predictor ν as ν :=

∑
k∈Nwkµk.

Step 3: ν predicts every µ ∈ C. Since the sets T1, T2\T1, . . . , Tk\Tk−1, . . . are disjoint,
we must have ρ(Tk\Tk−1)→ 0, so that mk → 0 (since mk ≤ ρ(Tk\Tk−1) + εk → 0). Let

T := ∪k∈NTk.

Fix any µ ∈ C. Suppose that µ(Tµ\T ) > 0. Since µ is absolutely continuous with respect
to ρ, we must have ρ(Tµ\T ) > 0. Then for every k > 1 we have

mk = sup
µ′∈C

ρ(Tµ′\Tk−1) ≥ ρ(Tµ\Tk−1) ≥ ρ(Tµ\T ) > 0,

which contradicts mk → 0. Thus, we have shown that

µ(T ∩ Tµ) = 1. (3)
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Let us show that every µ ∈ C is absolutely continuous with respect to ν. Indeed, fix any
µ ∈ C and suppose µ(A) > 0 for some A ∈ F . Then from (3) we have µ(A∩T ) > 0, and, by
absolute continuity of µ with respect to ρ, also ρ(A ∩ T ) > 0. Since T = ∪k∈NTk, we must
have ρ(A∩Tk) > 0 for some k ∈ N. Since on the set Tk the measure µk has non-zero density
fµk with respect to ρ, we must have µk(A∩Tk) > 0. (Indeed, µk(A∩Tk) =

∫
A∩Tk fµkdρ > 0.)

Hence,

ν(A ∩ Tk) ≥ wkµk(A ∩ Tk) > 0,

so that ν(A) > 0. Thus, µ is absolutely continuous with respect to ν, and so, by Theorem 2,
ν predicts µ in total variation distance.

Thus, examples of families C for which there is a ρ that predicts every µ ∈ C in total
variation, are limited to families of measures which have a density with respect to some
measure ρ. On the one hand, from statistical point of view, such families are rather large:
the assumption that the probabilistic law in question has a density with respect to some
(nice) measure is a standard one in statistics. It should also be mentioned that such families
can easily be uncountable. On the other hand, even such basic examples as the set of all
Bernoulli i.i.d. measures does not allow for a predictor that predicts every measure in total
variation. Indeed, all these processes are singular with respect to one another; in particular,
each of the non-overlapping sets Tp of all sequences which have limiting fraction p of 0s has
probability 1 with respect to one of the measures and 0 with respect to all others; since there
are uncountably many of these measures, there is no measure ρ with respect to which they
all would have a density (since such a measure should have ρ(Tp) > 0 for all p) . As it was
mentioned, predicting in total variation distance means predicting with arbitrarily growing
horizon (Kalai and Lehrer, 1994), while prediction in expected average KL divergence is
only concerned with the probabilities of the next observation, and only on time and data
average. For the latter measure of prediction quality, consistent predictors exist not only for
the class of all Bernoulli processes, but also for the class of all stationary processes (Ryabko,
1988). The next theorem establishes the result similar to Theorem 4 for expected average
KL divergence.

Theorem 5 Let C be a set of probability measures on (X∞,F). If there is a measure ρ such
that ρ predicts every µ ∈ C in expected average KL divergence, then there exist a sequence
µk ∈ C, k ∈ N and a sequence wk > 0, k ∈ N, such that

∑
k,∈Nwk = 1, and the measure

ν :=
∑

k∈Nwkµk predicts every µ ∈ C in expected average KL divergence.

A difference worth noting with respect to the formulation of Theorem 4 (apart from a
different measure of divergence) is in that in the latter the weights wk can be chosen ar-
bitrarily, while in Theorem 5 this is not the case. In general, the statement “

∑
k∈Nwkνk

predicts µ in expected average KL divergence for some choice of wk, k ∈ N” does not imply
“
∑

k∈Nw
′
kνk predicts µ in expected average KL divergence for every summable sequence of

positive w′k, k ∈ N,” while the implication trivially holds true if the expected average KL
divergence is replaced by the total variation. This is illustrated in the last example of this
section. An interesting related question (which is beyond the scope of this paper) is how to
chose the weights to optimize the behaviour of a predictor before asymptotic.
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The idea of the proof of Theorem 5 is as follows. For every µ and every n we consider
the sets Tnµ of those x1..n on which µ is greater than ρ. These sets have to have (from some
n on) a high probability with respect to µ. Then since ρ predicts µ in expected average KL
divergence, the ρ-probability of these sets cannot decrease exponentially fast (that is, it has
to be quite large). (The sequences µ(x1..n)/ρ(x1..n), n ∈ N will play the role of densities of
the proof of Theorem 4, and the sets Tnµ the role of sets Tµ on which the density is non-zero.)
We then use, for each given n, the same scheme to cover the set X n with countably many
Tnµ , as was used in the proof of Theorem 4 to construct a countable covering of the set X∞ ,
obtaining for each n a predictor νn. Then the predictor ν is obtained as

∑
n∈Nwnνn, where

the weights decrease subexponentially. The latter fact ensures that, although the weights
depend on n, they still play no role asymptotically. The technically most involved part of
the proof is to show that the sets Tnµ in asymptotic have sufficiently large weights in those
countable covers that we construct for each n. This is used to demonstrate the implication
“if a set has a high µ probability, then its ρ-probability does not decrease too fast, provided
some regularity conditions.” The proof is broken into the same steps as the (simpler) proof
of Theorem 4, to make the analogy explicit and the proof more understandable.
Proof Define the weights wk := wk−2, where w is the normalizer 6/π2.
Step 1: densities. Define the sets

Tnµ :=

{
x1..n ∈ X n : µ(x1..n) ≥ 1

n
ρ(x1..n)

}
. (4)

Using Markov’s inequality, we derive

µ(X n\Tnµ ) = µ

(
ρ(x1..n)

µ(x1..n)
> n

)
≤ 1

n
Eµ

ρ(x1..n)

µ(x1..n)
=

1

n
, (5)

so that µ(Tnµ ) → 1. (Note that if µ is singular with respect to ρ, as is typically the case,

then ρ(x1..n)
µ(x1..n)

converges to 0 µ-a.e. and one can replace 1
n in (4) by 1, while still having

µ(Tnµ )→ 1.)
Step 2n: a countable cover, time n. Fix an n ∈ N. Define mn

1 := maxµ∈C ρ(Tnµ ) (since
X n are finite all suprema are reached). Find any µn1 such that ρn1 (Tnµn1

) = mn
1 and let

Tn1 := Tnµn1
. For k > 1, let mn

k := maxµ∈C ρ(Tnµ \Tnk−1). If mn
k > 0, let µnk be any µ ∈ C such

that ρ(Tnµnk
\Tnk−1) = mn

k , and let Tnk := Tnk−1 ∪ Tnµnk ; otherwise let Tnk := Tnk−1. Observe that

(for each n) there is only a finite number of positive mn
k , since the set X n is finite; let Kn

be the largest index k such that mn
k > 0. Let

νn :=

Kn∑
k=1

wkµ
n
k .

As a result of this construction, for every n ∈ N every k ≤ Kn and every x1..n ∈ Tnk using (4)
we obtain

νn(x1..n) ≥ wk
1

n
ρ(x1..n). (6)

Step 2: the resulting predictor. Finally, define

ν :=
1

2
γ +

1

2

∑
n∈N

wnνn, (7)
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where γ is the i.i.d. measure with equal probabilities of all x ∈ X (that is, γ(x1..n) = |X |−n
for every n ∈ N and every x1..n ∈ X n). We will show that ν predicts every µ ∈ C, and then in
the end of the proof (Step r) we will show how to replace γ by a combination of a countable
set of elements of C (in fact, γ is just a regularizer which ensures that ν-probability of any
word is never too close to 0).

Step 3: ν predicts every µ ∈ C. Fix any µ ∈ C. Introduce the parameters εnµ ∈ (0, 1),
n ∈ N, to be defined later, and let jnµ := 1/εnµ. Observe that ρ(Tnk \Tnk−1) ≥ ρ(Tnk+1\Tnk ),
for any k > 1 and any n ∈ N, by definition of these sets. Since the sets Tnk \Tnk−1, k ∈ N
are disjoint, we obtain ρ(Tnk \Tnk−1) ≤ 1/k. Hence, ρ(Tnµ \Tnj ) ≤ εnµ for some j ≤ jnµ , since
otherwise mn

j = maxµ∈C ρ(Tnµ \Tnjnµ ) > εnµ so that ρ(Tnjnµ+1\Tnjnµ ) > εnµ = 1/jnµ , which is a

contradiction. Thus,
ρ(Tnµ \Tnjnµ ) ≤ εnµ. (8)

We can upper-bound µ(Tnµ \Tnjnµ ) as follows. First, observe that

dn(µ, ρ) = −
∑

x1..n∈Tnµ ∩Tnjnµ

µ(x1..n) log
ρ(x1..n)

µ(x1..n)

−
∑

x1..n∈Tnµ \Tnjnµ

µ(x1..n) log
ρ(x1..n)

µ(x1..n)

−
∑

x1..n∈Xn\Tnµ

µ(x1..n) log
ρ(x1..n)

µ(x1..n)

= I + II + III. (9)

Then, from (4) we get
I ≥ − log n. (10)

Observe that for every n ∈ N and every set A ⊂ X n, using Jensen’s inequality we can obtain

−
∑

x1..n∈A
µ(x1..n) log

ρ(x1..n)

µ(x1..n)
= −µ(A)

∑
x1..n∈A

1

µ(A)
µ(x1..n) log

ρ(x1..n)

µ(x1..n)

≥ −µ(A) log
ρ(A)

µ(A)
≥ −µ(A) log ρ(A)− 1

2
. (11)

Thus, from (11) and (8) we get

II ≥ −µ(Tnµ \Tnjnµ ) log ρ(Tnµ \Tnjnµ )− 1/2 ≥ −µ(Tnµ \Tnjnµ ) log εnµ − 1/2. (12)

Furthermore,

III ≥
∑

x1..n∈Xn\Tnµ

µ(x1..n) logµ(x1..n) ≥ µ(X n\Tnµ ) log
µ(X n\Tnµ )

|X n\Tnµ |

≥ −1

2
− µ(X n\Tnµ )n log |X | ≥ −1

2
− log |X |, (13)
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where in the second inequality we have used the fact that entropy is maximized when all
events are equiprobable, in the third one we used |X n\Tnµ | ≤ |X |n, while the last inequality
follows from (5). Combining (9) with the bounds (10), (12) and (13) we obtain

dn(µ, ρ) ≥ − log n− µ(Tnµ \Tnjnµ ) log εnµ − 1− log |X |,

so that

µ(Tnµ \Tnjnµ ) ≤ 1

− log εnµ

(
dn(µ, ρ) + log n+ 1 + log |X |

)
. (14)

Since dn(µ, ρ) = o(n), we can define the parameters εnµ in such a way that − log εnµ = o(n)
while at the same time the bound (14) gives µ(Tnµ \Tnjnµ ) = o(1). Fix such a choice of εnµ.

Then, using µ(Tnµ )→ 1, we can conclude

µ(X n\Tnjnµ ) ≤ µ(X n\Tnµ ) + µ(Tnµ \Tnjnµ ) = o(1). (15)

We proceed with the proof of dn(µ, ν) = o(n). For any x1..n ∈ Tnjnµ we have

ν(x1..n) ≥ 1

2
wnνn(x1..n) ≥ 1

2
wnwjnµ

1

n
ρ(x1..n) =

wnw

2n
(εnµ)2ρ(x1..n), (16)

where the first inequality follows from (7), the second from (6), and in the equality we have
used wjnµ = w/(jnµ)2 and jnµ = 1/εµn. Next we use the decomposition

dn(µ, ν) = −
∑

x1..n∈Tnjnµ

µ(x1..n) log
ν(x1..n)

µ(x1..n)
−

∑
x1..n∈Xn\Tnjnµ

µ(x1..n) log
ν(x1..n)

µ(x1..n)
= I + II. (17)

From (16) we find

I ≤ − log
(wnw

2n
(εnµ)2

)
−

∑
x1..n∈Tnjnµ

µ(x1..n) log
ρ(x1..n)

µ(x1..n)

= (1 + 3 log n− 2 log εnµ − 2 logw) +

dn(µ, ρ) +
∑

x1..n∈Xn\Tnjnµ

µ(x1..n) log
ρ(x1..n)

µ(x1..n)


≤ o(n)−

∑
x1..n∈Xn\Tnjnµ

µ(x1..n) logµ(x1..n)

≤ o(n) + µ(X n\Tnjnµ )n log |X | = o(n), (18)

where in the second inequality we have used − log εnµ = o(n) and dn(µ, ρ) = o(n), in the
last inequality we have again used the fact that the entropy is maximized when all events
are equiprobable, while the last equality follows from (15). Moreover, from (7) we find

II ≤ log 2−
∑

x1..n∈Xn\Tnjnµ

µ(x1..n) log
γ(x1..n)

µ(x1..n)
≤ 1 + nµ(X n\Tnjnµ ) log |X | = o(n), (19)
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where in the last inequality we have used γ(x1..n) = |X |−n and µ(x1..n) ≤ 1, and the last
equality follows from (15).

From (17), (18) and (19) we conclude 1
ndn(ν, µ)→ 0.

Step r: the regularizer γ. It remains to show that the i.i.d. regularizer γ in the definition
of ν (7), can be replaced by a convex combination of a countably many elements from C.
Indeed, for each n ∈ N, denote

An := {x1..n ∈ X n : ∃µ ∈ C µ(x1..n) 6= 0},

and let for each x1..n ∈ X n the measure µx1..n be any measure from C such that
µx1..n(x1..n) ≥ 1

2 supµ∈C µ(x1..n). Define

γ′n(x′1..n) :=
1

|An|
∑

x1..n∈An

µx1..n(x′1..n),

for each x′1..n ∈ An, n ∈ N, and let γ′ :=
∑

k∈Nwkγ
′
k. For every µ ∈ C we have

γ′(x1..n) ≥ wn|An|−1µx1..n(x1..n) ≥ 1

2
wn|X |−nµ(x1..n)

for every n ∈ N and every x1..n ∈ An, which clearly suffices to establish the bound II = o(n)
as in (19).

Example: countable classes of measures. A very simple but rich example of a class C that
satisfies the conditions of both the theorems above, is any countable family C = {µk : k ∈ N}
of measures. In this case, any mixture predictor ρ :=

∑
k∈Nwkµk predicts all µ ∈ C both

in total variation and in expected average KL divergence. A particular instance, that has
gained much attention in the literature, is the family of all computable measures. Although
countable, this family of processes is rather rich. The problem of predicting all computable
measures was introduced in (Solomonoff, 1978), where a mixture predictor was proposed.

Example: Bernoulli i.i.d. processes. Consider the class CB = {µp : p ∈ [0, 1]} of all Bernoulli
i.i.d. processes: µp(xk = 0) = p independently for all k ∈ N. Clearly, this family is
uncountable. Moreover, each set

Tp := {x ∈ X∞ : the limiting fraction of 0s in x equals p},

has probability 1 with respect to µp and probability 0 with respect to any µp′ : p′ 6= p.
Since the sets Tp, p ∈ [0, 1] are non-overlapping, there is no measure ρ for which ρ(Tp) > 0
for all p ∈ [0, 1]. That is, there is no measure ρ with respect to which all µp are absolutely
continuous. Therefore, by Theorem 2, a predictor that predicts any µ ∈ CB in total variation
does not exist, demonstrating that this notion of prediction is rather strong. However, we
know (e.g., Krichevsky, 1993) that the Laplace predictor (1) predicts every Bernoulli i.i.d.
process in expected average KL divergence (and not only). Hence, Theorem 4 implies that
there is a countable mixture predictor for this family too. Let us find such a predictor. Let
µq : q ∈ Q be the family of all Bernoulli i.i.d. measures with rational probability of 0, and
let ρ :=

∑
q∈Qwqµq, where wq are arbitrary positive weights that sum to 1. Let µp be any
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Bernoulli i.i.d. process. Let h(p, q) denote the divergence p log(p/q)+(1−p) log(1−p/1−q).
For each ε we can find a q ∈ Q such that h(p, q) < ε. Then

1

n
dn(µp, ρ) =

1

n
Eµp log

logµp(x1..n)

log ρ(x1..n)
≤ 1

n
Eµp log

logµp(x1..n)

wq logµq(x1..n)

= − logwq
n

+ h(p, q) ≤ ε+ o(1). (20)

Since this holds for each ε, we conclude that 1
ndn(µp, ρ) → 0 and ρ predicts every µ ∈ CB

in expected average KL divergence.
Example: stationary processes. In (Ryabko, 1988) a predictor ρR was constructed which
predicts every stationary process ρ ∈ CS in expected average KL divergence. (This predictor
is obtained as a mixture of predictors for k-order Markov sources, for all k ∈ N.) Therefore,
Theorem 5 implies that there is also a countable mixture predictor for this family of pro-
cesses. Such a predictor can be constructed as follows (the proof in this example is based on
the proof in Ryabko and Astola, 2006, Appendix 1). Observe that the family Ck of k-order
stationary binary-valued Markov processes is parametrized by 2k [0, 1]-valued parameters:
probability of observing 0 after observing x1..k, for each x1..k ∈ X k. For each k ∈ N let µkq ,

q ∈ Q2k be the (countable) family of all stationary k-order Markov processes with rational
values of all the parameters. We will show that any predictor ν :=

∑
k∈N

∑
q∈Q2k wkwqµ

k
q ,

where wk, k ∈ N and wq, q ∈ Q2k , k ∈ N are any sequences of positive real weights that
sum to 1, predicts every stationary µ ∈ CS in expected average KL divergence. For µ ∈ CS
and k ∈ N define the k-order conditional Shannon entropy hk(µ) := Eµ logµ(xk+1|x1..k).
We have hk+1(µ) ≥ hk(µ) for every k ∈ N and µ ∈ CS , and the limit

h∞(µ) := lim
k→∞

hk(µ) (21)

is called the limit Shannon entropy; see, for example, (Gallager, 1968). Fix some µ ∈ CS . It
is easy to see that for every ε > 0 and every k ∈ N we can find a k-order stationary Markov
measure µkqε , qε ∈ Q

2k with rational values of the parameters, such that

Eµ log
µ(xk+1|x1..k)
µkqε(xk+1|x1..k)

< ε. (22)

We have

1

n
dn(µ, ν) ≤ − logwkwqε

n
+

1

n
dn(µ, µkqε)

= O(k/n) +
1

n
Eµ logµ(x1..n)− 1

n
Eµ logµkqε(x1..n)

= o(1) + h∞(µ)− 1

n
Eµ

n∑
k=1

logµkqε(xt|x1..t−1)

= o(1) + h∞(µ)− 1

n
Eµ

k∑
t=1

logµkqε(xt|x1..t−1)−
n− k
n

Eµ logµkqε(xk+1|x1..k)

≤ o(1) + h∞(µ)− n− k
n

(hk(µ)− ε), (23)
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where the first inequality is derived analogously to (20), the first equality follows from (2),
the second equality follows from the Shannon-McMillan-Breiman theorem (e.g., Gallager,
1968), that states that 1

n logµ(x1..n) → h∞(µ) in expectation (and a.s.) for every µ ∈ CS ,
and (2); in the third equality we have used the fact that µkqε is k-order Markov and µ is
stationary, whereas the last inequality follows from (22). Finally, since the choice of k and
ε was arbitrary, from (23) and (21) we obtain limn→∞

1
ndn(µ, ν) = 0.

Example: weights may matter. Finally, we provide an example that illustrates the difference
between the formulations of Theorems 4 and 5: in the latter the weights are not arbitrary.
We will construct a sequence of measures νk, k ∈ N, a measure µ, and two sequences of
positive weights wk and w′k with

∑
k∈Nwk =

∑
k∈Nw

′
k = 1, for which ν :=

∑
k∈Nwkνk

predicts µ in expected average KL divergence, but ν ′ :=
∑

k∈Nw
′
kνk does not. Let νk be a

deterministic measure that first outputs k 0s and then only 1s, k ∈ N. Let wk = w/k2 with
w = 6/π2 and w′k = 2−k. Finally, let µ be a deterministic measure that outputs only 0s. We
have dn(µ, ν) = − log(

∑
k≥nwk) ≤ − log(wn−2) = o(n), but dn(µ, ν ′) = − log(

∑
k≥nw

′
k) =

− log(2−n+1) = n− 1 6= o(n), proving the claim.

4. Characterizing Predictable Classes

Knowing that a mixture of a countable subset gives a predictor if there is one, a notion
that naturally comes to mind, when trying to characterize families of processes for which a
predictor exists, is separability. Can we say that there is a predictor for a class C of measures
if and only if C is separable? Of course, to talk about separability we need a suitable topology
on the space of all measures, or at least on C. If the formulated questions were to have a
positive answer, we would need a different topology for each of the notions of predictive
quality that we consider. Sometimes these measures of predictive quality indeed define a
nice enough structure of a probability space, but sometimes they do not. The question
whether there exists a topology on C, separability with respect to which is equivalent to the
existence of a predictor, is already more vague and less appealing. Nonetheless, in the case
of total variation distance we obviously have a candidate topology: that of total variation
distance, and indeed separability with respect to this topology is equivalent to the existence
of a predictor, as the next theorem shows. This theorem also implies Theorem 4, thereby
providing an alternative proof for the latter. In the case of expected average KL divergence
the situation is different. While one can introduce a topology based on it, separability with
respect to this topology turns out to be a sufficient but not a necessary condition for the
existence of a predictor, as is shown in Theorem 9.

4.1 Separability

Definition 6 (unconditional total variation distance) Introduce the (unconditional)
total variation distance

v(µ, ρ) := sup
A∈F
|µ(A)− ρ(A)|.

Theorem 7 Let C be a set of probability measures on (X∞,F). There is a measure ρ such
that ρ predicts every µ ∈ C in total variation if and only if C is separable with respect to the
topology of total variation distance. In this case, any measure ν of the form ν =

∑∞
k=1wkµk,
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where {µk : k ∈ N} is any dense countable subset of C and wk are any positive weights that
sum to 1, predicts every µ ∈ C in total variation.

Proof Sufficiency and the mixture predictor. Let C be separable in total variation distance,
and let D = {νk : k ∈ N} be its dense countable subset. We have to show that ν :=∑

k∈Nwkνk, where wk are any positive real weights that sum to 1, predicts every µ ∈ C in
total variation. To do this, it is enough to show that µ(A) > 0 implies ν(A) > 0 for every
A ∈ F and every µ ∈ C. Indeed, let A be such that µ(A) = ε > 0. Since D is dense in
C, there is a k ∈ N such that v(µ, νk) < ε/2. Hence νk(A) ≥ µ(A) − v(µ, νk) ≥ ε/2 and
ν(A) ≥ wkνk(A) ≥ wkε/2 > 0.

Necessity. For any µ ∈ C, since ρ predicts µ in total variation, µ has a density (Radon-
Nikodym derivative) fµ with respect to ρ. We can define L1 distance with respect to ρ as
Lρ1(µ, ν) =

∫
X∞ |fµ − fν |dρ. The set of all measures that have a density with respect to

ρ, is separable with respect to this distance (for example, a dense countable subset can be
constructed based on measures whose densities are step-functions, that take only rational
values, see, e.g., Kolmogorov and Fomin, 1975); therefore, its subset C is also separable. Let
D be any dense countable subset of C. Thus, for every µ ∈ C and every ε there is a µ′ ∈ D
such that Lρ1(µ, µ′) < ε. For every measurable set A we have

|µ(A)− µ′(A)| =
∣∣∣∣∫
A
fµdρ−

∫
A
fµ′dρ

∣∣∣∣ ≤ ∫
A
|fµ − fµ′ |dρ ≤

∫
X∞
|fµ − fµ′ |dρ < ε.

Therefore, v(µ, µ′) = supA∈F |µ(A)−µ′(A)| < ε, and the set C is separable in total variation
distance.

Definition 8 (asymptotic KL “distance” D) Define asymptotic expected average KL
divergence between measures µ and ρ as

D(µ, ρ) = lim sup
n→∞

1

n
dn(µ, ρ). (24)

Theorem 9 For any set C of probability measures on (X∞,F), separability with respect
to the asymptotic expected average KL divergence D is a sufficient but not a necessary
condition for the existence of a predictor:

(i) If there exists a countable set D := {νk : k ∈ N} ⊂ C, such that for every µ ∈ C and
every ε > 0 there is a measure µ′ ∈ D, such that D(µ, µ′) < ε, then every measure ν
of the form ν =

∑∞
k=1wkµk, where wk are any positive weights that sum to 1, predicts

every µ ∈ C in expected average KL divergence.

(ii) There is an uncountable set C of measures, and a measure ν, such that ν predicts
every µ ∈ C in expected average KL divergence, but µ1 6= µ2 implies D(µ1, µ2) = ∞
for every µ1, µ2 ∈ C; in particular, C is not separable with respect to D.

Proof (i) Fix µ ∈ C. For every ε > 0 pick k ∈ N such that D(µ, νk) < ε. We have

dn(µ, ν) = Eµ log
µ(x1..n)

ν(x1..n)
≤ Eµ log

µ(x1..n)

wkνk(x1..n)
= − logwk + dn(µ, νk) ≤ nε+ o(n).
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Since this holds for every ε, we conclude 1
ndn(µ, ν)→ 0.

(ii) Let C be the set of all deterministic sequences (measures concentrated on just one
sequence) such that the number of 0s in the first n symbols is less than

√
n. Clearly, this set

is uncountable. It is easy to check that µ1 6= µ2 implies D(µ1, µ2) =∞ for every µ1, µ2 ∈ C,
but the predictor ν, given by ν(xn = 0) := 1/n independently for different n, predicts every
µ ∈ C in expected average KL divergence.

Examples. Basically, the examples of the preceding section carry over here. Indeed, the
example of countable families is trivially also an example of separable (with respect to either
of the considered topologies) family. For Bernoulli i.i.d. and k-order Markov processes, the
(countable) sets of processes that have rational values of the parameters, considered in the
previous section, are dense both in the topology of the parametrization and with respect to
the asymptotic average divergence D. It is also easy to check from the arguments presented
in the corresponding example of Section 3, that the family of all k-order stationary Markov
processes with rational values of the parameters, where we take all k ∈ N, is dense with
respect to D in the set CS of all stationary processes, so that CS is separable with respect to
D. Thus, the sufficient but not necessary condition of separability is satisfied in this case.
On the other hand, neither of these latter families is separable with respect to the topology
of total variation distance.

4.2 Conditions Based on the Local Behaviour of Measures

Next we provide some sufficient conditions for the existence of a predictor based on local
characteristics of the class of measures, that is, measures truncated to the first n obser-
vations. First of all, it must be noted that necessary and sufficient conditions cannot be
obtained this way. The basic example is that of a family C0 of all deterministic sequences
that are 0 from some time on. This is a countable class of measures which is very easy to
predict. Yet, the class of measures on X n, obtained by truncating all measures in C0 to the
first n observations, coincides with what would be obtained by truncating all deterministic
measures to the first n observations, the latter class being obviously not predictable at all
(see also examples below). Nevertheless, considering this kind of local behaviour of mea-
sures, one can obtain not only sufficient conditions for the existence of a predictor, but also
rates of convergence of the prediction error. It also gives some ideas of how to construct
predictors, for the cases when the sufficient conditions obtained are met.

For a class C of stochastic processes and a sequence x1..n ∈ X n introduce the coefficients

cx1..n(C) := sup
µ∈C

µ(x1..n).

Define also the normalizer
cn(C) :=

∑
x1..n∈Xn

cx1..n(C).

Definition 10 (NML estimate) The normalized maximum likelihood estimator λ is de-
fined (e.g., Krichevsky, 1993) as

λC(x1..n) :=
1

cn(C)
cx1..n(C),
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for each x1..n ∈ X n.

The family λC(x1..n) (indexed by n) in general does not immediately define a stochastic
process over X∞ (λC are not consistent for different n); thus, in particular, using average
KL divergence for measuring prediction quality would not make sense, since

dn(µ(·|x1..n−1), λC(·|x1..n−1))

can be negative, as the following example shows.

Example: negative dn for NML estimates. Let the processes µi, i ∈ {1, . . . , 4} be defined on
the steps n = 1, 2 as follows. µ1(00) = µ2(01) = µ4(11) = 1, while µ3(01) = µ3(00) = 1/2.
We have λC(1) = λC(0) = 1/2, while λC(00) = λC(01) = λC(11) = 1/3. If we define
λC(x|y) = λC(yx)/λC(y), we obtain λC(1|0) = λC(0|0) = 2/3. Then d2(µ3(·|0), λC(·|0)) =
log 3/4 < 0.

Yet, by taking an appropriate mixture, it is still possible to construct a predictor (a
stochastic process) based on λ, that predicts all the measures in the class.

Definition 11 (predictor ρc) Let w := 6/π2 and let wk := w
k2

. Define a measure µk as
follows. On the first k steps it is defined as λC, and for n > k it outputs only zeros with
probability 1; so, µk(x1..k) = λC(x1..k) and µk(xn = 0) = 1 for n > k. Define the measure
ρc as

ρc =
∞∑
k=1

wkµk.

Thus, we have taken the normalized maximum likelihood estimates λn for each n and
continued them arbitrarily (actually, by a deterministic sequence) to obtain a sequence of
measures on (X∞,F) that can be summed.

Theorem 12 For any set C of probability measures on (X∞,F), the predictor ρc defined
above satisfies

1

n
dn(µ, ρc) ≤

log cn(C)
n

+O

(
log n

n

)
; (25)

in particular, if

log cn(C) = o(n), (26)

then ρc predicts every µ ∈ C in expected average KL divergence.

Proof Indeed,

1

n
dn(µ, ρc) =

1

n
E log

µ(x1..n)

ρc(x1..n)
≤ 1

n
E log

µ(x1..n)

wnµn(x1..n)

≤ 1

n
log

cn(C)
wn

=
1

n
(log cn(C) + 2 log n+ logw). (27)
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Example: i.i.d., finite-memory. To illustrate the applicability of the theorem we first con-
sider the class of i.i.d. processes CB over the binary alphabet X = {0, 1}. It is easy to see
that, for each x1, . . . , xn,

sup
µ∈CB

µ(x1..n) = (k/n)k(1− k/n)n−k,

where k = #{i ≤ n : xi = 0} is the number of 0s in x1, . . . , xn. For the constants cn(C) we
can derive

cn(C) =
∑

x1..n∈Xn
sup
µ∈CB

µ(x1..n) =
∑

x1..n∈Xn
(k/n)k(1− k/n)n−k

=
n∑
k=0

(
n

k

)
(k/n)k(1− k/n)n−k ≤

n∑
k=0

n∑
t=0

(
n

k

)
(k/n)t(1− k/n)n−t = n+ 1,

so that cn(C) ≤ n+ 1.

In general, for the class Ck of processes with memory k over a finite space X we can get
polynomial cn(C) (see, for example, Krichevsky, 1993, and also Ryabko and Hutter, 2007).
Thus, with respect to finite-memory processes, the conditions of Theorem 12 leave ample
space for the growth of cn(C), since (26) allows subexponential growth of cn(C). Moreover,
these conditions are tight, as the following example shows.

Example: exponential coefficients are not sufficient. Observe that the condition (26) can-
not be relaxed further, in the sense that exponential coefficients cn are not sufficient for
prediction. Indeed, for the class of all deterministic processes (that is, each process from
the class produces some fixed sequence of observations with probability 1) we have cn = 2n,
while obviously for this class a predictor does not exist.

Example: stationary processes. For the set of all stationary processes we can obtain cn(C) ≥
2n/n (as is easy to see by considering periodic n-order Markov processes, for each n ∈ N), so
that the conditions of Theorem 12 are not satisfied. This cannot be fixed, since uniform rates
of convergence cannot be obtained for this family of processes, as was shown in (Ryabko,
1988).

4.2.1 Optimal Rates of Convergence

A natural question that arises with respect to the bound (25) is whether it can be matched
by a lower bound. This question is closely related to the optimality of the normalized
maximum likelihood estimates used in the construction of the predictor. In general, since
NML estimates are not optimal, neither are the rates of convergence in (25). To obtain
(close to) optimal rates one has to consider a different measure of capacity.

To do so, we make the following connection to a problem in information theory. Let
P(X∞) be the set of all stochastic processes (probability measures) on the space (X∞,F),
and let P(X ) be the set of probability distributions over a (finite) set X . For a class C of
measures we are interested in a predictor that has a small (or minimal) worst-case (with
respect to the class C) probability of error. Thus, we are interested in the quantity

inf
ρ∈P(X∞)

sup
µ∈C

D(µ, ρ), (28)
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where the infimum is taken over all stochastic processes ρ, and D is the asymptotic expected
average KL divergence (24). (In particular, we are interested in the conditions under which
the quantity (28) equals zero.) This problem has been studied for the case when the
probability measures are over a finite set X , and D is replaced simply by the KL divergence
d between the measures. Thus, the problem was to find the probability measure ρ (if it
exists) on which the following minimax is attained

R(A) := inf
ρ∈P(X )

sup
µ∈A

d(µ, ρ), (29)

where A ⊂ P(X ). This problem is closely related to the problem of finding the best code
for the class of sources A, which was its original motivation. The normalized maximum
likelihood distribution considered above does not in general lead to the optimum solution
for this problem. The optimum solution is obtained through the result that relates the
minimax (29) to the so-called channel capacity.

Definition 13 (Channel capacity) For a set A of measures on a finite set X the channel
capacity of A is defined as

C(A) := sup
P∈P0(A)

∑
µ∈S(P )

P (µ)d(µ, ρP ),

where P0(A) is the set of all probability distributions on A that have a finite support, S(P )
is the (finite) support of a distribution P ∈ P0(A), and ρP =

∑
µ∈S(P ) P (µ)µ.

It is shown in (Ryabko, 1979) and (Gallager, 1976 (revised 1979) that C(A) = R(A), thus
reducing the problem of finding a minimax to an optimization problem. For probability
measures over infinite spaces this result (R(A) = C(A)) was generalized by Haussler (1997),
but the divergence between probability distributions is measured by KL divergence (and
not asymptotic average KL divergence), which gives infinite R(A), for example, already for
the class of i.i.d. processes.

However, truncating measures in a class C to the first n observations, we can use the
results about channel capacity to analyze the predictive properties of the class. Moreover,
the rates of convergence that can be obtained along these lines are close to optimal. In order
to pass from measures minimizing the divergence for each individual n to a process that
minimizes the divergence for all n we use the same idea as when constructing the process ρc.

Theorem 14 Let C be a set of measures on (X∞,F), and let Cn be the class of measures
from C restricted to X n. There exists a measure ρC such that

1

n
dn(µ, ρC) ≤ C(Cn)

n
+O

(
log n

n

)
;

in particular, if C(Cn)/n → 0, then ρC predicts every µ ∈ C in expected average KL diver-
gence. Moreover, for any measure ρC and every ε > 0 there exists µ ∈ C such that

1

n
dn(µ, ρC) ≥ C(Cn)

n
− ε.
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Proof As shown in (Gallager, 1976 (revised 1979), for each n there exists a sequence νnk ,
k ∈ N of measures on X n such that

lim
k→∞

sup
µ∈Cn

dn(µ, νnk )→ C(Cn).

For each n ∈ N find an index kn such that

| sup
µ∈Cn

dn(µ, νnkn)− C(Cn)| ≤ 1.

Define the measure ρn as follows. On the first n symbols it coincides with νnkn and ρn(xm =
0) = 1 for m > n. Finally, set ρC =

∑∞
n=1wnρn, where wk = w

n2 , w = 6/π2. We have to
show that limn→∞

1
ndn(µ, ρC) = 0 for every µ ∈ C. Indeed, similarly to (27), we have

1

n
dn(µ, ρC) =

1

n
Eµ log

µ(x1..n)

ρC(x1..n)

≤
logw−1k

n
+

1

n
Eµ log

µ(x1..n)

ρn(x1..n)
≤ logw + 2 log n

n
+

1

n
dn(µ, ρn)

≤ o(1) +
C(Cn)

n
.

The second statement follows from the fact (Ryabko, 1979; Gallager, 1976 (revised 1979)
that C(Cn) = R(Cn) (cf. (29)).

Thus, if the channel capacity C(Cn) grows sublinearly, a predictor can be constructed
for the class of processes C. In this case the problem of constructing the predictor is reduced
to finding the channel capacities for different n and finding the corresponding measures on
which they are attained or approached.
Examples. For the class of all Bernoulli i.i.d. processes, the channel capacity C(CnB) is
known to be O(log n) (Krichevsky, 1993). For the family of all stationary processes it is
O(n), so that the conditions of Theorem 14 are satisfied for the former but not for the
latter.

We also remark that the requirement of a sublinear channel capacity cannot be relaxed,
in the sense that a linear channel capacity is not sufficient for prediction, since it is the
maximal possible capacity for a set of measures on X n, achieved, for example, on the set of
all measures, or on the set of all deterministic sequences.

5. Discussion

The first possible extension of the results of the paper that comes to mind is to find out
whether the same holds for other measures of performance, such as prediction in KL di-
vergence without time-averaging, or with probability 1 rather then in expectation, or with
respect to other measures of prediction error, such as absolute distance. (See Ryabko and
Hutter, 2007 for a discussion of different measures of performance and relations between
them.) Maybe the same results can be obtained in more general formulations, for example,
using f -divergences of Csiszar (1967).
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More generally, the questions we addressed in this work are a part of a larger problem:
given an arbitrary class C of stochastic processes, find the best predictor for it. We have
considered two subproblems: first, in which form to look for a predictor if one exists. Here
we have shown that if any predictor works then a Bayesian one works too. The second one
is to characterize families of processes for which a predictor exists. Here we have analyzed
what the notion of separability furnishes in this respect, as well as identified some simple
sufficient conditions based on the local behaviour of measures in the class. Another approach
would be to identify the conditions which two measures µ and ρ have to satisfy in order
for ρ to predict µ. For prediction in total variation such conditions have been identified
(Blackwell and Dubins, 1962; Kalai and Lehrer, 1994) and, in particular, in the context of
the present work, they turn out to be very useful. Kalai and Lehrer (1994) also provide some
characterization for the case of a weaker notion of prediction: difference between conditional
probabilities of the next (several) outcomes (weak merging of opinions). In (Ryabko and
Hutter, 2008b) some sufficient conditions are found for the case of prediction in expected
average KL divergence, and prediction in average KL divergence with probability 1. Of
course, another very natural approach to the general problem posed above is to try and find
predictors (in the form of algorithms) for some particular classes of processes which are of
practical interest. Towards this end, we have found a rather simple form that some solution
to this question has if a solution exists: a Bayesian predictor whose prior is concentrated on
a countable set. We have also identified some sufficient conditions under which a predictor
can actually be constructed (e.g., using NML estimates). However, the larger question of
how to construct an optimal predictor for an arbitrary given family of processes, remains
open.

Taking an even more general perspective, one can consider the problem of finding the
best response to the actions of a (stochastic) environment, which itself responds to the
actions of a learner. Allowing into consideration environments that change their behaviour
in response to the action of the learner, clearly makes the problem much more difficult, but
it also dramatically extends the range of applications. For this general problem one can
pose the same questions: given a set C of environments, how can we construct a learner
that is (asymptotically) optimal if any environment from C is chosen to generate the data?
One can consider Bayesian learners for this formulation too (Hutter, 2005); it would be
interesting to find out whether one can show that, when there is a learner which is optimal
in every environment from C, then there is a Bayesian learner with a countably supported
prior that has this property too.
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