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Abstract. Numerous control and learning problems face the situation where se-
quences of high-dimensional highly dependent data are available, but no or little
feedback is provided to the learner. In such situations it may be useful to find a
concise representation of the input signal, that would preserve as much as pos-
sible of the relevant information. In this work we are interested in the problems
where the relevant information is in the time-series dependence. Thus, the prob-
lem can be formalized as follows. Given a series of observations Xo, ..., X,
coming from a large (high-dimensional) space X, find a representation function
f mapping X to a finite space ) such that the series f(Xo),..., f(Xn) pre-
serve as much information as possible about the original time-series dependence
in Xo, ..., X,. For stationary time series, the function f can be selected as the
one maximizing the time-series information Ioo (f) = ho(f(X)) — heo (f(X))
where ho(f(X)) is the Shannon entropy of f(Xo) and hoo (f(X)) is the entropy
rate of the time series f(Xo),..., f(Xn),.... In this paper we study the func-
tional I (f) from the learning-theoretic point of view. Specifically, we provide
some uniform approximation results, and study the behaviour of Ioo(f) in the
problem of optimal control.

1 Introduction

In many learning and control problems one has to deal with the situation where the input
data is high-dimensional and abundant, but the feedback for the learning algorithm is
scarce or absent. In such situations, finding the right representation of the data can be
the key to solving the problem. The focus of this work is on problems in which all or a
large significant part of the relevant information is in the time-series dependence of the
process. This is the case in many applications, starting with speech or hand-written text
recognition, and, more generally, including control and learning problems in which the
input is a stream of sensor data of an agent interacting with its environment.

A more formal exposition of the problem follows. First, assume that we are given
a stationary sequence X, ..., X,,... where X; belong to a large (continuous, high-
dimensional) space X'. For the moment, assume that the problem is non-interactive
(the control part is introduced later). We are looking for a compact representation
f(Xo),..., f(Xy),... where f(X;) belong to a small (for example, finite) space ).

Let us first consider the following “ideal” situation. There exists a function f :
X — Y such that each random variable X is independent of the rest of the sample
X0,y Xic1, Xit1,- .., Xn given f(X;) (for each i,n € N). That is, all the time-
series dependence is in the sequence f(Xp), ..., f(Xn), and, given this sequence, the
original sequence X, ..., X, ... can be considered as noise, in the sense that X; are
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conditionally independent. In this case we say that (X;);en are conditionally indepen-
dent given (f(X;))ien. It is shown in [13] that in this “ideal” situation the function f
maximizes the following information criterion

where h(f (X)) is the Shannon entropy of the first element and .. is the entropy rate
of the (stationary) time series f(Xo),..., f(Xn),.... This means that for any other
function g : X — Y we have I(f) > I (g), with equality if and only (X;);ecy are
also conditionally independent given (g(X;))ien-

This allows us to pass to the non-ideal situation, in which there is no function f that
satisfies the conditional independence criterion. Given a set of functions mapping X" to
Y, the function that preserves the most of the time-series dependence can be defined as
the one that maximizes (@) (this is opposed to the ideal case, in which such a function
f preserves all of the time-series dependence).

In this work we show that under certain conditions it is possible to estimate
uniformly over a set F of functions f : X — ). Importantly, the estimation can be
carried out without estimating the distribution of the original time series (X;);en.

Of particular interest (especially to control problems) is the case where the time
series (X;);en form a Markov process. In this case, in the “ideal” situation (when
(X;):en are conditionally independent given (f(X;))ien) one can show that the pro-
cess (f(X;))ien is also Markov, and I (f) = I1(f) := h(f(Xo)) — h(f(X1)|f(X0))-
In general, we show that, in the Markov case, to select a function that maximizes I ( f)
it is enough to maximize I (f).

Next, assume that at each time step ¢ we are allowed to take an action A;, and the next
observation X; 1 depends not only on Xy, ..., X, butalso on the actions A, ..., A,.
Thus, we are considering the control problem, and the time series (X;);en do not have
to be stationary any more. In this situation, the time-series information I ( f) becomes
dependent on the policy of the learner (that is, on the way the actions are chosen). How-
ever, we can show that in the Markov case, under some mild connectivity conditions,
to select the function f that maximizes I (f), it is enough to consider just one policy
that takes all actions with non-zero probability. This means that one can find the repre-
sentation function f while executing a random policy, without any feedback from the
environment (i.e., without rewards). One can then use this representation to solve the
target control problem more easily.

Related Work. Learning representations, feature learning, model learning, as well as
model and feature selection, are different variants and different names of the same gen-
eral problem: making the data more amenable to learning. From the vast literature avail-
able on these problems we only mention a few that are somehow related to the approach
in this work. First, note that in our “ideal” (conditional independence) case, if we further
assume that (X;) form a Markov chain, then we get a special case of Hidden Markov
models (HMM) [11], with (unobserved) f(X;) being hidden states. Indeed, as it was
mentioned, in this case the variables f(X;) form a Markov chain (Section[3.2)), and the
conditional independence property means that X; depend on the rest of the sequences
only through f(X;), thus f(X;) are hidden states. Note that this is a special case of
HMM, since the observed variables X; themselves are also Markovian; however, this
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Markov process is over a large (continuous) state space, so it is difficult to use it di-
rectly. Thus, the general case (non-ideal situation, X; are not necessarily Markov) is,
in a certain sense, a generalization of HMMs. A related approach to finding represen-
tations in HMMs is that of [18] (see also [6]). The setting of [18]] can be related to
our setting in Sections 3.2} 3.3] Specifically, [18] considers environments generated by
HMMs, where the hidden states are deterministic functions of the observed variables.
The approach of [18] is then to maximize a penalized likelihood function, where the
penalty is for larger state spaces. Consistency results are obtained for the case of finite
or countably infinite sets of maps (representation functions) that are given by so-called
finite-state machines of bounded memory, one of which is the true environment.

From a different perspective, if X; are independent and identically distributed and,
instead of the time-series dependence (which is absent in this case), we want to preserve
as much as possible of the information about another sequence of variables (labels)
Y1,...,Y,, then one can arrive at the information bottleneck method [20]]. The infor-
mation bottleneck method can, in turn, be seen as a generalization of the rate-distortion
theory of Shannon [17]. Applied to dynamical systems, the information
bottleneck method can be formulated [1]] as follows: minimize I (past; representation) —
B1 (representation; future), where /3 is a parameter. A related idea is that of causal states
[L6]: two histories belong to the same causal state iff they give the same conditional
distribution over futures. What distinguishes the approach of this work from those de-
scribed, is that we never have to consider the probability distribution of the input time
series X; directly — only through the distribution of the representations f(X;). Thus,
modelling or estimating X; is not required; this is particularly important for empirical
estimates.

For the control problem, to relate the proposed approach to others, first observe that
in the case of an MDP, in the “ideal” scenario (there exists a function f : X — ) such
that (X;);cn are conditionally independent given (f(X;));en) for any states z, 2’ € X
for which f(z) = f(a’) all the transition probabilities are the same. In other words,
states x, 2’ € X for which f(z) = f(2’) are equivalent in a very strong sense, and the
function f can be viewed as state aggregation. Generalizations of this equivalence and
aggregation (in the presence of rewards or costs) are studied in the bisimulation and
homomorphism literature [3\ 2} [19,|12]]. The main difference of our approach (besides
the absence of rewards) is in the treatment of approximate (non-ideal) cases and in the
way we propose to find the representation (aggregation) functions. In bisimulation this
is approached via a metric on the state space, defined using a distance between the
transition (and reward) probability distributions, which then has to be estimated [2,[19].
In our approach, all that has to be estimated concerns the representations f(X), rather
than the observations (states) X themselves.

In the context of supervised reinforcement learning (that is, in the presence of re-
wards), a related problem is that of finding a (concise) representation of the input space,
such that the resulting process on representations is Markovian [8} 9].

It should also be noted that the conditional independence property has been previ-
ously studied in a different context (classification) in [14]]. The latter work shows that
if the objects (X;);en are conditionally independent given the labels (Y;);cn then, ef-
fectively, one can use classification methods developed to work in the case of i.i.d.
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object-label pairs. Combined with the results of this work this means that in the ideal
(conditional independence) case one can decompose a learning problem into i.i.d. clas-
sification and learning the time-series dependence. It is also worth noting that the quan-
tity (I has been studied in a different context: [13]] uses it to construct a statistical test
for the hypothesis that a time series consists of independent and identically distributed
variables. Furthermore, one can show (see below) that for stationary time series I ( f)
equals to the following mutual information I(Xo; X_1, X_o,...); this characteristic
of time series has been extensively studied [4]].

Organization. The rest of the paper is organized as follows. SectionRlintroduces some
notation and definitions. Section ] introduces the model and gives the main results
concerning representation functions for stationary time series. Section considers
the special case of (stationary) Markov chains; Section 3] presents results on uniform
empirical approximation of time-series information. Finally, Section extends the
model and results to the control problem.

2 Preliminaries

Let (X, Fx) and (), Fy) be measurable spaces. X is assumed to be large (e.g., a high-
dimensional Euclidean space) and ) small. For simplicity of exposition, we assume
that Y is finite; however, the results can be extended to infinite (and continuous) spaces
Y as well.

Time-series (or process) distributions are probability measures on the space
(XN Fy) of one-way infinite sequences (where Fy is the induced sigma-algebra of
XN). We use the abbreviation X_j, for Xo, ..., Xg. A distribution p is stationary if
p(Xo.k € A) = p(Xpt1.ntk € A) forall A € Fyr, k,n € N (with Fyx being the
sigma-algebra of X'F).

A stationary distribution on XN can be uniquely extended to a distribution on X'Z
(that is, to a time series ..., X 1, Xg, X1,...); we will assume such an extension
whenever necessary.

For a random variable Z denote h(Z) its entropy. Define h(f) as the entropy of

f(Xo)

ho(f) := h(f(X0)), 2)
and hy(f) the k-order entropy of f(X)
hi(f) = Exo. xR (X0 F(X0), -5 f (Xgem1))- 3)

For stationary time series (f(X;))ien the entropy rate is defined as
hoo (f) := lm hy(f).
k— o0

When we speak about conditional distributions the equality of distributions should be
understood in the “almost sure” sense.
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2.1 Time-Series Information

The “ideal” representation function (which may or may not exist, depending on the
distribution) is defined as a function f such that (X;);cn are conditionally independent

given (f(X;))ien.

Definition 1 (Conditional Independence given Representations). (X;);cn are con-
ditionally independent given (f(X;))ien, if, for all n,k, and all iy, . . . iy, # n, X, is
independent of X, , ..., X, given f(Xy):

P(Xolf(Xn), Xiys -, Xi) = P(Xp| f(Xy)) as. (4)

Definition 2. The time-series information of a series f(Xo), ..., f(Xy), ... is defined
as

Ioo (f) = ho(f) = hoo(f)- )

The following theorem established in [15] shows that an “ideal” representation max-
imizes the time-series information.

Theorem 1 ([15]). Let (X;)ien be stationary, and let f : X — Y be such that (X;);en
are conditionally independent given (f(X;))ien. Then for any g : X — Y we have
Io(f) > Iso(g), with equality if and only if (X;)icn are conditionally independent
given (g(Xi))ien-

Define also the k-order time-series information as follows

Ik (f) = ho(f) = he(f) = I(f (Xk); f(Xo), - .., f(Xk-1))-
The following lemma (also from [[15]) helps to understand the nature of the quantities
Io(f) and I (f).
Lemma 1. If the time series (X;)icz is stationary then
Lo (f) = I(F(X0); F(X-1), F(Xa),...): (©)
Proof. Denote Y; := f(X;). We have

Lo(f) = lim A(Yo) = A(Yo|Y-1,..., Y1)
= lim I(Y0; Yo, Vo) = I(Yos Vo, Yoo, o),
—00

where the first equality follows from the stationarity of (X;);cz and for the last see,
e.g., [4, Lemma 5.6.1] O

3 Main Results

Given a set F of representation functions f : X — ), the function that is “closest”
to satisfying the conditional independence property [1l can be defined as the one that
maximizes (3). If the set F is finite and the time series (X;);en is stationary, then it is
possible to find the function that maximizes (3) given a large enough sample of the time
series, without knowing anything about its distribution [15].
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The situation is more difficult if the space of representation functions is infinite (pos-
sibly uncountable); moreover, we would like to introduce learner’s actions into the pro-
cess, potentially making the time series (X;);cn non-stationary.

These scenarios are considered in this work.

3.1 Uniform Approximation

Given an infinite (possibly uncountable) set F of functions f : X — ), we want to find
a function that maximizes I (f). Here we first consider the problem of approximating
I1.(f), and then based on it proceed with the problem of approximating I (f).

Since we do not know I (f), we can select a function that maximizes the empirical
estimate Iy, (f). The question arises, under what conditions is this procedure consistent?
The requirements we impose to obtain consistency of this procedure are of the follow-
ing two types: first, the set F should be sufficiently small, and, second, the time series
(X:):ien should be such that uniform (over F) convergence guarantees can be estab-
lished. Here the first condition is formalized in terms of VC dimension, and the second
in terms of mixing times. We show that, under these conditions, the empirical estima-
tor is indeed consistent and learning-theory-style finite-sample performance guarantees
can be established.

For a function f : X — ) and asample X7, ..., X,, define the following estimators:
pr(y) == L3 I(f(2) = y), and analogously for ps(y1,...,yx) and multivariate
entropies.

Definition 3 (S-mixing Coefficients). For a process distribution p define the mixing
coefficients

Blp. k)= sup  [p(ANB)—p(A)p(B)|
A€o(X_c..0),
Beo(Xk. .00)

where o(..) denotes the sigma-algebra of the random variables in brackets.

When ((p, k) — 0 the process p is called absolutely regular; this condition is much
stronger than ergodicity, but is much weaker than the i.i.d. assumption.

The general tool that we use to obtain performance guarantees in this section is the
following bound that can be obtained from the results of [7]. Let F be a set of VC
dimension d and let p be a stationary distribution over X'*°. Then

1 n
n(p, Fre) = p(sgjglg > 9(Xi) —Epg(X1)| > 8)
9 i=1

< nBlp,ty,) + 8title—n/8 - (7)

where ¢,, is integer in 1..n and l,, = n/t,, . The parameters ¢,, should be set according
to the values of 3 in order to optimize the bound.

Furthermore, assume geometric S-mixing distributions, that is, 3(p,t) < ~t for
some v < 1. Letting l,, = t,, = \/n the bound ([Z) becomes

an(p, F,e) < nyV™ 4+ 8nld+D/2e=Vn'/8 — A(d e, n, ). (8)
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Geometric S-mixing properties can be demonstrated for large classes of (k-order)
(PO)MDPs [5]], and for many other distributions.

Theorem 2. Let the time series (X;)ien be generated by a stationary distribution p
whose (B-mixing coefficients satisfy B(p,m) < ™ for some v < 1. Let F be a set
of functions f : X — Y such that for each y € )Y the VC dimension of the set
{H{IGng(z):y} : g € F} is not greater than d. Furthermore, assume that, for some
k €N, there exist an o > 0 such that for any g € F and any y1, . ..,yr € Y we have

P(9(Xo) = y1,---,9(Xi) = yi)) > a”. )
Then

P(sup | Ii(g) — Ii(g)| > &) < 4|V|* L A(Tkd, —ke /4|Y|" loga,n — k,~)  (10)
geEF

for everye < a.
Proof. First, note that from stationarity of (X;);en we get
It (g) = h(9(Xo)) — h(g(Xo), ..., 9(Xk)) + h(g(X1),...,9(Xk))

so that

sup | I (9) — In(9)| < sup |h(g(X0)) = h(g(Xo))]

geF
+ 21612 h(g(Xo), ..., 9(Xk)) — h(g(Xo), ..., 9(Xk))
+sup |h(g(X1), ..., g(Xr)) — h(g(X1), ..., 9(Xk))| = T1 + Tp + T.

geF

Introduce the shorthand notation p,(y) := P(g(Xo) = y). From the conditions of the
theorem we know that py(y) > « for any g, y; but we also will need the same to hold
for the estimates p. So, consider the following event

B := {inf inf p(g(Xo) = ) < a/2
{;gf;gyp(g( 0) =y) < a/2},

and the following simple decomposition
P(Ty >¢) < P(B)+ P(Th > ¢|-B). (11)
From (9) and the bound (8)) we obtain

P(B) <|VIA(d, a/2,n,7). (12)
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The Taylor expansion of a function u differentiable around ¢ can be expressed as
u(t) = ul(c) + (t — e)u'(fc + (1 — 0)t) for some 6 € (0, 1). Using this for the function
u(p) = plog p we obtain

lho(g) D=1 (pg(y)logpy(y) — Hy(y)log by (y)|
yey
=) " (pg(y) — Da(y)) (1 +1og(0py(y) + (1 — 0)py(y))|
yey

< —loga Y pg(y) — hy(v)|

yey

1 n
= —loga Y [Elyxo)—y =~ D Locxo)=yl,
=1

yey

where the last inequality uses () and holds under the assumption py(y) > «/2 for all
y € Y (that is, conditional on —B). From this, (12), (IT) and (8) we obtain

P(Ty > ¢e) < |V|(A(d,a/2,n,7) + A(d, —&/|Y|log a, m, 7))
< 2[Y|A(d, —¢/|Y|log o, m, ),

where we have used € < a.

It remains to repeat the same analysis for 75 and T3. Clearly, it is enough to con-
sider only 7% (73 is analogous). The difference with T3 is that instead of the entropy
of one variable h(g(Xy)) we are have to deal with the entropies of (k + 1)-tuples
h(g(Xo),-..,g(Xk)). First, observe that, from the definition of mixing, if a process p
generating X, X1, Xo, ... is mixing with coefficients 3(p, m) then the process made
of tuples (Xo, ..., Xk), (X1,..., Xgt1), ... is mixing with coefficients 8(p, m — k).
Next, for the VC dimensions, observe that if a set

Hz:9(x) =y} :9€ F}

has VC dimension d (for every y € ) then the set

{1, yz) s gile) =yt =1.k+ 1} : (91, .., 9k) € fk}

has VC dimension bounded by 7kd (for all (yi,...,yx) € V*); see [21], which also
gives a more precise bound. Now we can repeat the derivation for 75, and obtain the
resulting bound (10). 0

The condition (@) requires that there is sufficient noise in the time series g(X;) for every
g € F. While this condition is rather mild, we think that it is an artefact of the analysis
and can probably be avoided.

We proceed to construct an estimator of I, (¢g) which is uniformly consistent over a
set F of functions g, provided the time series satisfies mixing conditions. To this end,
denote J;(n) the right-hand side of (I0). Observe that for each fixed k € N, dx(n)
decreases exponentially fast with n. Therefore, it is possible to find a non-decreasing
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sequence k, : n € N such that d;, (n) decreases exponentially fast with n, while
k,, — oo. Define

Io(9) = I, (9)- (13)

Furthermore, observe that, for any stationary time series we have, by definition,
hoo(g) = limg—, o0 hi(g). For uniform approximation of I, we need this convergence
to hold uniformly over the set F. This is akin to the mixing conditions, but, in general,
does not follow from them. Thus, we strengthen the mixing conditions by requiring that
the following holds

lim sup |hoo(g) — h(g)| = 0. (14)

k— oo geEF

The following statement is easy to show from Theorem ] the definition of I

and (14).
Theorem 3. Under the conditions of Theorem[2 if (I4) holds true then

sup |Ioo(9) — Ino(g)| = 0 a.s.
geEF

3.2 Time-Series Information for Markov Chains

For the control problem, a special role is played by Markov environments; we first look
at the simplifications gained by making this assumption in the stationary case.

If the (X;);en form a stationary (k-order) Markov process then the situation sim-
plifies considerably. First, if (X;);cn are conditionally independent given (f(X;));en
then (f(X;))ien also form a stationary (k-order) Markov chain. Moreover, to find the
function that maximizes the time-series information (@) it is enough to find the func-
tion that maximizes a simpler quantity Iy (f) = I(f(Xo); f(X1),..., f(Xk)), as the
following theorem shows. In the theorem and henceforth, for the sake of simplicity of
notation, we only consider the case k = 1; the general case is analogous.

Theorem 4. Suppose that X; form a stationary Markov process and (X;);en are con-
ditionally independent given (f(X;))ien. Then

(i) (f(X:))ien also form a stationary Markov chain;
(ii) Io(f) is the mutual information between f(Xo) and f(X1):

Ioo (f) = Ii(f) = I(f(Xo), f(X1)), (15)

(iii) for any g : X — Y we have I (f) > I1(g) with equality if and only if (X;);en
are conditionally independent given (g(X;))ien.

Proof. We use the notation Y; := f(X;). First note that from the definition (1) of
conditional independence and using the chain rule for entropies, it is easy to show that
for any n, k,¢1,...,%x € N we have

h(Ynli/ilaXila"-aifikink) = h(YnD/h??}/lk) (16)
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For the first statement of the theorem, observe that

h(Ysr|Yi - Ye) = h(Yosa [Yi, X1, oy Yoo Xon)
= h(Yn+l|Yn7Xn) = h(Yn+1|Yn)7 (17)

where we have used successively (I6), the Markov property for (X;);cn and again (16).

For the second statement, first note that h, = hy for Markov chains, implying (I3).
Next, for any g : X — ) the process g(X;) is stationary, which implies hoo(g(X)) <
hi1(g(X)). Thus, using Theorem[I] we obtain

L(f) = 1x(f) 2 I (9) > ho(g) — h1(g) = L1 (g)-

3.3 The Active Case: MDPs

In this section we introduce learner’s actions into the protocol. The setting is a sequen-
tial interaction between the learner and the environment. Given are a space of observa-
tions A and of a space actions A, where A is assumed finite. At each time step 7 € N the
environment provides an observation X;, the learner takes an action A;, then the next
observation X, is provided, and so on. Each next observation X;; is generated ac-
cording to some (unknown) probability distribution P (X, 1|Xo, Ao, ..., Xi, A;). Ac-
tions are generated by a probability distribution 7 that is called a policy; in general, it
has the form 7T(A1'+1 |X0, Ao, ey Xi, Ai, Xi+1).

Note that we do not introduce costs or rewards into consideration. Thus, we are
dealing with an unsupervised version of the problem; the goal is just to find a concise
representation that preserves the dynamics of the problem.

Definition 4 (Conditional Independence, Active Case). For a policy 7, an environ-
ment P and a measurable function f we say that (X;);en are conditionally independent
given (f(X;))ien under the policy 7 if

Pﬂ-(Xﬂ|f(Xn)7Aani17Ai17~ . ~7Xik7Aik) = Pﬂ-(Xan(Xn)) a.s. (18)

foralln,k € N, and all i1, ...,i, € Nsuchthati; #n, j = 1..k, where PT refers to
the joint distribution of X; and A; generated according to P and .

The focus in this section is on time-homogeneous Markov environments, that is, on
Markov Decision Processes (MDPs). Thus, we assume that X;; only depends on X;
and A;, so that P can be identified with a function from X x A to the space P(X’) of
probability distributions on X

P(Xit1|Xo, A0, ..., Xi—1,Aim1, Xi = 2, A = a) = P(Xiq1|z, a).

In this case observations X; are called states.

A policy is called stationary if each action only depends on the current state; that is,
7T(Ai+1|X0, Ao, oo, X5, Ai, Xi+1 = LL’) = 7T(Ai+1|£L') where, foreach z € X, 7T(A|!E)
is a distribution over A.
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Call an MDP admissible if any stationary policy 7 has a (unique up to sets of measure
0) stationary distribution P™ over states. The notation E™, P™, h™, I, etc. refers to the
stationary distribution of the policy 7.

For MDPs we introduce the following policy-independent definition of conditional
independence.

Definition 5 (Conditional Independence, MDPs). For an admissible MDP and a mea-
surable function f : X — Y we say that (X;);en are conditionally independent given
(f(X4))ien if, for every stationary policy 7, (X;)ien are conditionally independent
given f(X;) under policy .

Call a stationary policy 7 stochastic if 7(a|x) > « > 0 for every x € X and every
ac A

Call an admissible MDP (weakly) connected if for every stochastic policy 7 and
every stationary policy 7’ we have P™ > P (that is, for any measurable S C X x A
P™(S) > 0 implies P7(S) > 0). It is easy to see that in this definition one can
replace “for every stochastic policy 7w with “there exists a stationary policy 7.” Note the
difference with a much stronger property that is sometimes called ergodic or recurrent
MDP [10]]; the latter property would be obtained if we remove the word “stochastic”
in the definition (allowing, in particular, all deterministic policies 7).

It is easy to see that for discrete MDPs this definition coincides with the usual defini-
tion of weak connectedness (for any pair of states s1, so there is a policy that gets from
$1 to so in a finite number of steps with non-zero probability).

Theorem S. Fix an admissible weakly connected MDP and a stationary stochastic pol-
icy . Then (X;)ien are conditionally independent given (f(X;)):en if and only if
(X:):ien are conditionally independent given (f(X;))ien under .

Proof. We only have to prove the “if” part (the other part is obvious). Let my be any
stationary policy. Introduce the notation Y; := f(X;) and

UO = (XflvAflvA()?Xl’Al)'

We have to establish (I8) for P™; note that since the process is Markov we can take
k=2,i1 =1, iy = —1in (I8) w.Lo.g.; thus, we need to demonstrate

P7o (X()lYo) = p7o (XolYQ, U()) a.s. (19)

Since the policy 7 is stochastic, the measure P™ dominates P™°. Therefore, the follow-
ing probability-one statements are non-vacuous:

PW(X(]D/O) = PW(X(]D/O,U()) = PWO(X0|Y0,U0) a.s.

forall ¢ € N, where the first equality follows from (I8), and the second follows from the
fact that conditionally on the actions the distributions P™ and P™ coincide. Moreover,

P™(Xo|Yo) = Ef2 P™ (Xo[Yo, Un) = Ef2 P™(Xo|Ya) = P™(Xo[Yo) as.

Thus, (X;);en are conditionally independent given (f(X;));en under 7p; since o was
chosen arbitrary, this concludes the proof.
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Corollary 1. Fix an admissible MDP and a stationary stochastic policy w. Assume
that for some f : X — Y (X;)ien are conditionally independent given (f(X;))ien. If
[' = argmax, IT (g) then (X;)en are conditionally independent given (f'(X;))ien.

Proof. The statement follows from Theorems[I]and O

Consider the following scenario. A real-life control problem is given, in which an
(average, discounted) cost has to be optimized. In addition, a simulator for this problem
is available; running the simulator does not incur any costs, but also does not provide
any information about the costs — it only simulates the dynamics of the problem. Given
such a simulator, and a set F of representation functions, one can first execute a random
policy to find the best representation function f as the one that maximizes L (f). Under
the conditions given in Section the resulting estimator is consistent. One can then
use the representation function found to learn the optimal policy in the real problem
(with costs).

The problem of solving (efficiently) both problems together— learning the repre-
sentation and the finding the optimal policy in a control problem— is left for future
work.

4 Outlook

This work together with [[15] lays some theoretical foundations for building represen-
tations functions for time series in an unsupervised, model-free way. Specifically, the
results on uniform approximation demonstrate that it is statistically possible to find
good approximations to the best representation functions in a large (continuous) sets F
of such functions. This can be done by selecting the function that maximizes empirical
time-series information, or its k-order version Ij. The next important step is to develop
efficient algorithms for finding such functions for specific sets /. Another interesting
question is what results can be obtained if we do not require uniform convergence. In
particular, whether it is possible to find, perhaps in some weak asymptotic sense, a func-
tion that maximizes I, over the set of all (measurable) functions mapping X to ). Our
conjecture is that this is possible for stationary ergodic time series.

For the control problem, we have shown that a consistent approach to find represen-
tations is just to take random actions and select the best representation for the resulting
time series. The resulting representation can then be used to learn the optimal policy for
an actual control problem. This may be a reasonable approach if the representation can
be found in a simulated scenario. Yet, it is clear that this is not the most efficient way.
A natural question is how to find a policy that allows one to find the best representation
using as little time (or samples) as possible.
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