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We consider the restless Markov bandit problem, in which the state of each arm evolves 
according to a Markov process independently of the learner’s actions. We suggest an 
algorithm, that first represents the setting as an MDP which exhibits some special 
structural properties. In order to grasp this information we introduce the notion of 
ε-structured MDPs, which are a generalization of concepts like (approximate) state 
aggregation and MDP homomorphisms. We propose a general algorithm for learning 
ε-structured MDPs and show regret bounds that demonstrate that additional structural 
information enhances learning.
Applied to the restless bandit setting, this algorithm achieves after any T steps regret of 
order Õ (

√
T ) with respect to the best policy that knows the distributions of all arms. We 

make no assumptions on the Markov chains underlying each arm except that they are 
irreducible. In addition, we show that index-based policies are necessarily suboptimal for 
the considered problem.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In the bandit problem the learner has to decide at time steps t = 1, 2, . . . which of the finitely many available arms to 
pull. Each arm produces a reward in a stochastic manner. The goal is to maximize the reward accumulated over time.

Following [1], traditionally it is assumed that the rewards produced by each given arm are independent and identically 
distributed (i.i.d.). If the probability distributions of the rewards of each arm are known, the best strategy is to only pull the 
arm with the highest expected reward. Thus, in the i.i.d. bandit setting the regret is measured with respect to the best arm. 
An extension of this setting is to assume that the rewards generated by each arm are not i.i.d., but are governed by some 
more complex stochastic process. Markov chains suggest themselves as an interesting and non-trivial model. In this setting 
it is often natural to assume that the stochastic process (Markov chain) governing each arm does not depend on the actions 
of the learner. That is, the chain takes transitions independently of whether the learner pulls that arm or not (giving the 
name restless bandit to the problem). The latter property makes the problem rather challenging: since we are not observing 
the state of each arm, the problem becomes a partially observable Markov decision process (POMDP), rather than being a 
(special case of) a fully observable MDP, as in the traditional i.i.d. setting. One of the applications that motivate the restless 
bandit problem is the so-called cognitive radio problem (e.g., [2]): Each arm of the bandit is a radio channel that can be 
busy or available. The learner (an appliance) can only sense a certain number of channels (in the basic case only a single 
one) at a time, which is equivalent to pulling an arm. It is natural to assume that whether the channel is busy or not at a 
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given time step depends on the past — so a Markov chain is the simplest realistic model — but does not depend on which 
channel the appliance is sensing. (See also Example 1 in Section 3 for an illustration of a simple instance of this problem.)

What makes the restless Markov bandit problem particularly interesting is that one can do much better than pulling the 
best arm. This can be seen already on simple examples with two-state Markov chains (see Section 3 below). Remarkably, 
this feature is often overlooked, notably by some early work on restless bandits, e.g. [3], where the regret is measured with 
respect to the mean reward of the best arm. This feature also makes the problem more difficult and in some sense more 
general than the non-stochastic bandit problem, in which the regret usually is measured with respect to the best arm in 
hindsight [4]. Finally, it is also this feature that makes the problem principally different from the so-called rested bandit 
problem, in which each Markov chain only takes transitions when the corresponding arm is pulled.

Thus, in the restless Markov bandit problem that we study, the regret should be measured not with respect to the best 
arm, but with respect to the best policy knowing the distribution of all arms. To understand what kind of regret bounds 
can be obtained in this setting, it is useful to compare it to the i.i.d. bandit problem and to the problem of learning an 
MDP. In the i.i.d. bandit problem, the minimax regret expressed in terms of the horizon T and the number of arms only 
is O (

√
T ), cf. [5]. If we allow problem-dependent constants into consideration, then the regret becomes of order log T but 

depends also on the gap between the expected reward of the best and the second-best arm. In the problem of learning to 
behave optimally in an MDP, nontrivial problem-independent finite-time regret guarantees (that is, regret depending only 
on T and the number of states and actions) are not possible to achieve. It is possible to obtain O (

√
T ) regret bounds that 

also depend on the diameter of the MDP [6] or similar related constants, such as the span of the optimal bias vector [7]. 
Regret bounds of order log T are only possible if one additionally allows into consideration constants expressed in terms of 
policies, such as the gap between the average reward obtained by the best and the second-best policy [6]. The difference 
between these constants and constants such as the diameter of an MDP is that one can try to estimate the latter, while 
estimating the former is at least as difficult as solving the original problem — finding the best policy. Turning to our 
restless Markov bandit problem, so far, to the best of our knowledge no regret bounds are available for the general problem. 
However, several special cases have been considered. Specifically, O (log T ) bounds have been obtained in [8] and [9]. While 
the latter considers the two-armed restless bandit case, the results of [8] are constrained by some ad hoc assumptions 
on the transition probabilities and on the structure of the optimal policy of the problem. The algorithm proposed in [8]
alternates exploration and exploitation steps, where the former shall guarantee that estimates are sufficiently precise, while 
in the latter an optimistic arm is chosen by a policy employing UCB-like confidence intervals. Computational aspects of the 
algorithm are however neglected. In addition, while the O (log T ) bounds of [8] depend on the parameters of the problem 
(i.e., on the unknown distributions of the Markov chains), it is unclear what order the bounds assume in the worst case, 
that is, when one takes the supremum over the bandits satisfying the assumptions imposed by the authors.

Finally, while regret bounds for the Exp3.S algorithm [4] can be applied in the restless bandit setting, these bounds 
depend on the “hardness” of the reward sequences, which in the case of reward sequences generated by a Markov chain 
can be arbitrarily high. We refer to [10] for an overview of bandit algorithms and corresponding regret bounds.

Here we present an algorithm for which we derive Õ (
√

T ) regret bounds, making no assumptions on the distribution of 
the Markov chains except that they are irreducible. The algorithm is based on constructing an approximate MDP represen-
tation of the POMDP problem, and then using a modification of the Ucrl2 algorithm of [6] to learn this approximate MDP. 
In addition to the horizon T and the number of arms and states, the regret bound also depends on the diameter and the 
mixing time (which can be eliminated however) of the Markov chains of the arms. If the regret has to be expressed only in 
these terms, then our lower bound shows that the dependence on T cannot be significantly improved.

A common feature of many bandit algorithms is that they look for an optimal policy in an index form (starting with the 
Gittins index [11], and including UCB [12], and, for the Markov case, [13,9]). That is, for each arm the policy maintains an 
index which is a function of time, states, and rewards of this arm only. At each time step, the policy samples the arm that 
has maximal index. This idea also leads to conceptually and computationally simple algorithms. One of the results in this 
work is to show that, in general, for the restless Markov bandit problem, index policies are suboptimal.

The rest of the paper is organized as follows. Section 2 defines the setting, in Section 3 we give some examples of 
the restless bandit problem, as well as demonstrate that index-based policies are suboptimal. Section 4 presents the main 
results: the upper and lower bounds on the achievable regret in the considered problem; Sections 5 and 7 introduce the 
algorithm for which the upper bound is proven; the latter part relies on ε-structured MDPs, a generalization of concepts 
like (approximate) state aggregation in MDPs [14] and MDP homomorphism [15], introduced in Section 6. This section 
also presents an extension of the Ucrl2 algorithm of [6] designed to work in this setting. The (longer) proofs are given in 
Sections 8 and 9 (with some details deferred to Appendix A), while Section 10 presents some directions for further research.

2. Preliminaries

Given are K arms, where underlying each arm j there is an irreducible Markov chain with state space S j , some specified 
initial state in S j , and transition matrix P j . For each state s in S j there is a reward distribution with mean r j(s) and support 
in [0, 1]. For the time being, we will assume that the learner knows the number of states for each arm and that all Markov 
chains are aperiodic. In Section 8, we discuss periodic chains, while in Section 10 we indicate how to deal with unknown 
state spaces. In any case, the learner knows neither the transition probabilities nor the mean rewards.
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For each time step t = 1, 2, . . . the learner chooses one of the arms, observes the current state s of the chosen arm i
and receives a random reward with mean ri(s). After this, the state of each arm j changes according to the transition 
matrices P j . The learner however is not able to observe the current state of the individual arms. We are interested in 
competing with the optimal policy π∗ which knows the mean rewards and transition matrices, yet observes as the learner 
only the current state of the chosen arm. Thus, we are looking for algorithms which after any T steps have small regret 
with respect to π∗ , i.e. minimize

T · ρ∗ −
T∑

t=1

rt,

where rt denotes the (random) reward earned at step t and ρ∗ is the average reward of the optimal policy π∗ . It will be 
seen in Section 5 that we can represent the problem as an MDP, so that π∗ and ρ∗ are indeed well-defined. Also, while for 
technical reasons we consider the regret with respect to Tρ∗ , our results also bound the regret with respect to the optimal 
T -step reward.

2.1. Mixing times and diameter

If an arm j is not selected for a large number of time steps, the distribution over states when selecting j will be close to 
the stationary distribution μ j of the Markov chain underlying arm j. Let μt

s be the distribution after t steps when starting 
in state s ∈ S j . Then setting

d j(t) := max
s∈S j

∥∥μt
s − μ j

∥∥
1 := max

s∈S j

∑
s′∈S j

∣∣μt
s

(
s′) − μ j

(
s′)∣∣,

we define the ε-mixing time of the Markov chain as

T j
mix(ε) := min

{
t ∈N

∣∣ d j(t) ≤ ε
}
.

Setting somewhat arbitrarily the mixing time of the chain to T j
mix := T j

mix(
1
4 ), one can show (cf. Eq. (4.36) in [16]) that

T j
mix(ε) ≤

⌈
log2

(
1

ε

)⌉
· T j

mix. (1)

Finally, let T j(s, s′) be the expected time it takes in arm j to reach a state s′ when starting in state s, where for s = s′ we 
set T j(s, s) := 1. Then we define the diameter of arm j to be D j := maxs,s′∈S j T j(s, s′).

3. Examples

Next we present a few examples that give insight into the nature of the problem and the difficulties in finding solutions. 
In particular, the examples demonstrate that (i) the optimal reward can be (much) bigger than the average reward of the 
best arm, (ii) the optimal policy does not maximize the immediate reward, and (iii) the optimal policy cannot always be 
expressed in terms of arm indexes.

Example 1 (Best arm is suboptimal). In this example the average reward of each of the two arms of a bandit is 1
2 , but the 

reward of the optimal policy is close to 3
4 . Consider a two-armed bandit. Each arm has two possible states, 0 and 1, which 

are also the rewards. Underlying each of the two arms is a (two-state) Markov chain with transition matrix 
( 1−ε ε

ε 1−ε

)
, 

where ε is small. Thus, a typical trajectory of each arm looks like this:

000000000001111111111111111000000000 . . . ,

and the average reward for each arm is 1
2 . It is easy to see that the optimal policy starts with any arm, and then switches 

the arm whenever the reward is 0, and otherwise sticks to the same arm. The average reward is close to 3
4 — much larger 

than the reward of each arm.
This example has a natural interpretation in terms of cognitive radio: two radio channels are available, each of which can 

be either busy (0) or available (1). A device can only sense (and use) one channel at a time, and one wants to maximize the 
amount of time the channel it tries to use is available.

Example 2 (Another optimal policy). Consider the previous example, but with ε close to 1. Thus, a typical trajectory of each 
arm is now

01010101001010110 . . . .

Here the optimal policy switches arms if the previous reward was 1 and stays otherwise.
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Fig. 1. The example used in the proof of Theorem 4. Dashed transitions are with probability 1
2 , others are deterministic with probability 1. Numbers are 

rewards in the respective state.

Example 3 (Optimal policy is not myopic). In this example the optimal policy does not maximize the immediate reward. Again, 
consider a two-armed bandit. Arm 1 is as in Example 1, and arm 2 provides Bernoulli i.i.d. rewards with probability 1

2 of 
getting reward 1. The optimal policy (which knows the distributions) will sample arm 1 until it obtains reward 0, when it 
switches to arm 2. However, it will sample arm 1 again after some time t (depending on ε), and only switch back to arm 2 
when the reward on arm 1 is 0. Note that whatever t is, the expected reward for choosing arm 1 will be strictly smaller 
than 1

2 , since the last observed reward was 0 and the limiting probability of observing reward 1 (when t → ∞) is 1
2 . At 

the same time, the expected reward of the second arm is always 1
2 . Thus, the optimal policy will sometimes “explore” by 

pulling the arm with the smaller expected reward.

An intuitively appealing idea is to look for an optimal policy which is index-based. That is, for each arm the policy 
maintains an index which is a function of time, states, and rewards of this arm only. At each time step, the policy samples 
the arm that has maximal index. This seems promising for at least two reasons: First, the distributions of the arms are 
assumed independent, so it may seem reasonable to evaluate them independently as well; second, this works in the i.i.d. 
case (e.g., the Gittins index [11] or UCB [12]). This idea also motivates the setting when just one out of two arms is Markov 
and the other is i.i.d., see e.g. [9]. Index policies for restless Markov bandits were also studied in [13]. Despite their intuitive 
appeal, in general, index policies are suboptimal.

Theorem 4 (Index-based policies are suboptimal). For each index-based policy π there is a restless Markov bandit problem in which 
π behaves suboptimally.

Proof. Consider the three bandits L (left), C (center), and R (right) in Fig. 1, where C and R start in the 1 reward state. 
(Arms C and R can easily be made aperiodic by adding further sufficiently small transition probabilities.) Assume that C 
has been observed in the 1

2 reward state one step before, while R has been observed in the 1 reward state three steps 
ago. The optimal policy will choose arm L which gives reward 1

2 with certainty (C gives reward 0 with certainty, while R 
gives reward 7

8 with probability 1
2 ) and subsequently arms C and R. However, if arm C was missing, in the same situation, 

the optimal policy would choose R: Although the immediate expected reward is smaller than when choosing L, sampling 
R gives also information about the current state, which can earn reward 3

4 a step later. Clearly, no index based policy will 
behave optimally in both settings. �
4. Main results

Theorem 5 (Main upper bound on regret). Consider a restless bandit with K aperiodic arms having state spaces S j , diameters D j , and 
mixing times T j

mix ( j = 1, . . . , K ). Then with probability at least 1 − δ the regret of Algorithm 2 (presented in Section 5 below) after 
T > 2 steps is upper bounded by

90 · S · 	Tmix
3/2 ·
K∏

j=1

(4D j) ·
⌈

max log2(4Di)
⌉

· log2
2

(
T

δ

)
· √T ,

where S := ∑K
j=1 |S j | is the total number of states and Tmix := max j T j

mix the maximal mixing time. This bound also holds with 
a slightly worse numerical constant for the regret with respect to the best T -step policy. Further, the dependence on Tmix can be 
eliminated to show that with probability at least 1 − δ the regret is bounded by

O

(
S ·

K∏
j=1

(4D j) · max
i

log(4Di) · log7/2
(

T

δ

)
· √T

)
.
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Remark 6. For periodic chains the bound of Theorem 5 has worse dependence on the state space, for details see Section 9
below.

Remark 7. Choosing δ = 1
T in Theorem 5, it is straightforward to obtain respective upper bounds on the expected regret.

Theorem 8 (Lower bound on regret). For any algorithm, any K > 1, and any m ≥ 1 there is a K -armed restless bandit problem with a 
total number of S := Km states, such that the regret after T steps is lower bounded by Ω(

√
ST ).

Remark 9. While it is easy to see that lower bounds depend on the total number of states over all arms, the dependence on 
other parameters in our upper bound is not clear. For example, intuitively, while in the general MDP case one wrong step 
may cost up to D — the MDP’s diameter [6] — steps to compensate for, here the Markov chains evolve independently of the 
learner’s actions, and the upper bound’s dependence on the diameter may be just an artefact of the proof.

5. Constructing the Algorithm I: MDP representation

For the sake of simplicity, we start with the simpler case when all Markov chains are aperiodic. In Section 9, we indicate 
how to adapt the proofs to the periodic case.

5.1. MDP representation

We represent the restless bandit setting as an MDP by recalling for each arm the last observed state and the number 
of time steps which have gone by since this last observation. Thus, each state of the MDP representation is of the form 
(s j, n j)

K
j=1 := (s1, n1, s2, n2, . . . , sK , nK ) with s j ∈ S j and n j ∈ N, meaning that each arm j has not been chosen for n j steps 

when it was in state s j . More precisely, (s j, n j)
K
j=1 is a state of the considered MDP if and only if (i) all n j are distinct and 

(ii) there is a j with n j = 1.1

The action space of the MDP is {1, 2, . . . , K }, and the transition probabilities from a state (s j, n j)
K
j=1 are given by the 

n j-step transition probabilities p
(n j )

j (s, s′) of the Markov chain underlying the chosen arm j (these are defined by the matrix 
power of the single step transition probability matrix, i.e. P

n j

j ). That is, the probability for a transition from state (s j, n j)
K
j=1

to (s′
j, n

′
j)

K
j=1 under action j is given by p

(n j)

j (s j, s′
j) iff (i) n′

j = 1, (ii) n′
� = n� +1 and s� = s′

� for all � �= j. All other transition 

probabilities are 0. Finally, the mean reward for choosing arm j in state (s j, n j)
K
j=1 is given by 

∑
s∈S j

p
(n j)

j (s j, s) · r j(s). This 
MDP representation has already been considered in [8].

Obviously, within T steps any policy can reach only states with n j ≤ T . Correspondingly, if we are interested in the 
regret within T steps, it will be sufficient to consider the finite sub-MDP consisting of states with n j ≤ T . We call this 
the T -step representation of the problem, and the regret will be measured with respect to the optimal policy in this T -step 
representation.2

5.2. Structure of the MDP representation

The MDP representation of our problem has some special structural properties. In particular, rewards and transition 
probabilities for choosing arm j only depend on the state of arm j, that is, s j and n j . Moreover, the support for each 
transition probability distribution is bounded, and for n j ≥ T j

mix(ε) the transition probability distribution will be close to the 
stationary distribution of arm j. Thus, one could reduce the T -step representation further by aggregating states3 (s j, n j)

K
j=1, 

(s′
j, n

′
j)

K
j=1 whenever n j, n′

j ≥ T j
mix(ε) and s� = s′

� , n� = n′
� for all � �= j. The rewards and transition probability distributions 

of aggregated states are ε-close, so that the error by aggregation can be bounded by results given in [17]. While this is 
helpful for approximating the problem when all parameters are known, it cannot be used directly when learning, since the 
observations in the aggregated states do not correspond to an MDP anymore. Thus, while standard reinforcement learning 
algorithms are still applicable, there are no theoretical guarantees for them. Instead, we will propose an algorithm which 
can exploit the structure information available for the MDP representation of the restless bandit setting directly. For that 
purpose, we first introduce the notion of ε-structured MDPs, which can grasp structural properties in MDPs more generally.

1 Actually, one would need to add for each arm j with |S j | > 1 a special state for not having sampled j so far. However, for the sake of simplicity we 
assume that in the beginning each arm is sampled once. The respective regret is negligible.

2 An undesirable consequence of this is that the optimal average reward ρ∗ which we compare to may be different for different horizons T . However, as 
already stated, our regret bounds also hold with respect to the more intuitive optimal T -step reward.

3 Aggregation of states s1, . . . , sn means that these states are replaced by a new state sagg inheriting rewards and transition probabilities from an arbitrary 
si (or averaging over all s�). Transitions to this state are set to p(sagg|s, a) := ∑

� p(s�|s, a).
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Algorithm 1 The colored Ucrl2 algorithm for learning in ε-structured MDPs.
Input: Confidence parameter δ > 0, aggregation parameter ε > 0, state space S , action space A, coloring and translation functions, a bound B on the size 
of the support of transition probability distributions.

Initialization: Set t := 1, and observe the initial state s1.

for episodes k = 1, 2, . . . do

Initialize episode k:
Set the start time of episode k, tk := t . Let Nk(c) be the number of times a state-action pair of color c has been visited prior to episode k, and vk(c)
the number of times a state-action pair of color c has been visited in episode k. Compute estimates r̂k(s, a) and p̂k(s′|s, a) for rewards and transition 
probabilities, using all samples from state-action pairs of the same color c(s, a), respectively.

Compute policy π̃k :
Let Mk be the set of plausible MDPs with rewards r̃(s, a) and transition probabilities p̃(·|s, a) satisfying 

∣∣r̃(s,a) − r̂k(s,a)
∣∣ ≤ ε +

√
7 log(2Ctk/δ)

2 max{1, Nk(c(s,a))} , (2)

∥∥p̃(·|s,a) − p̂k(·|s,a)
∥∥

1 ≤ ε +
√

56B log(2Ctk/δ)

max{1, Nk(c(s,a))} , (3)

where C is the number of distinct colors. Let ρ(π, M) be the average reward of a policy π : S → A on an MDP M ∈ Mk . Choose (e.g. by extended 
value iteration [6]) an optimal policy π̃k and an optimistic M̃k ∈ Mk such that

ρ(π̃k, M̃k) = max
{
ρ(π, M)

∣∣ π : S → A, M ∈Mk
}
. (4)

Execute policy π̃k :
while vk(c(st , π̃k(st ))) < max{1, Nk(c(st , π̃k(st )))} do� Choose action at = π̃k(st ), obtain reward rt , and observe next state st+1.� Set t := t + 1.
end while

end for

6. Digression: ε-structured MDPs and colored UCRL2

ε-structured MDPs are MDPs with some additional color information indicating similarity of state-action pairs. Thus, 
state-action pairs of the same color have similar (i.e., ε-close) rewards and transition probability distributions. Concerning 
the latter, we allow the supports of the transition probability distributions to be different, however demand that they can 
be mapped to each other by a bijective translation function.

Definition 10. An ε-structured MDP is an MDP with finite state space S , finite action space A, transition probability distri-
butions p(·|s, a), mean rewards r(s, a) ∈ [0, 1], and a coloring function c : S × A → C , where C is a set of colors. Further, for 
each two pairs (s, a), (s′, a′) ∈ S × A with c(s, a) = c(s′, a′) there is a bijective translation function φs,a,s′,a′ : S → S such that ∑

s′′ |p(s′′|s, a) − p(φs,a,s′,a′ (s′′)|s′, a′)| < ε and |r(s, a) − r(s′, a′)| < ε.

If there are states s, s′ in an ε-structured MDP such that c(s, a) = c(s′, a) for all actions a and the associated translation 
function φs,a,s′,a is the identity, we may aggregate the states (cf. footnote 3). We call the MDP in which all such states are 
aggregated the aggregated ε-structured MDP.

For learning in ε-structured MDPs we consider a modification of the Ucrl2 algorithm of [6]. The colored Ucrl2 algorithm 
is shown as Algorithm 1. As the original Ucrl2 algorithm it maintains confidence intervals for rewards and transition prob-
abilities which define a set of plausible MDPs M. Unlike the original Ucrl2 algorithm, which defines the set of plausible 
MDPs by confidence intervals for each single state-action pair, colored Ucrl2 calculates estimates from all samples of state-
action pairs of the same color and works with respectively adapted confidence intervals (2), (3) for each color to determine 
the set M of plausible MDPs. Generally, the algorithm proceeds in episodes, where in each episode k an optimistic MDP 
M̃k ∈ Mk and an optimal policy are chosen which maximize the average reward, cf. (4). An episode ends when for some 
color c the number of visits in state-action pairs of color c has doubled.

We note that computation of the optimistic MDP and the respective optimal policy in (4) can be done by extended value 
iteration as introduced in [6]. This is a modification of standard value iteration where each iteration can be performed in 
O (|S|2|A|) computation steps. For details we refer to Section 3.1.2 of [6].

6.1. Further applications

Although the focus of our work lies on the restless bandit problem, we’d like to note and demonstrate that ε-structured 
MDPs are a strong concept which is applicable to a wide range of problems.
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Fig. 2. A simple gridworld example (left). With ordinary state aggregation no simplification is possible. An MDP homomorphism can map the states below 
the main diagonal to the states above it (middle). The corresponding structured MDP only needs four colors to grasp the topological structure (right).

6.1.1. MDP aggregation, MDP homomorphism, and ε-structured MDPs
First, it is easy to see that ε-structured MDPs subsume previous notions of similarity like (approximate) state aggregation

in MDPs [14], MDP homomorphism [15], or lax bisimulation [18]. In state aggregation, one merges states to meta-states when 
their rewards and transition probabilities are identical or close. This corresponds to a coloring where all translation func-
tions are the identity. MDP homomorphisms and lax bisimulation are more general in that they allow arbitrary translation 
functions just like ε-structured MDPs, yet they can only capture “total” similarity of two states s, s′ assuming that each 
action in s can be mapped to an action in s′ with similar rewards and transitions. Unlike that, in ε-structured MDPs two 
states can be similar only with respect to single actions.

Note that while this allows to grasp weaker notions of similarity, the original MDP cannot always be reduced to a smaller 
one. However, as we will see below, learning in structured MDPs incurs less regret.

Example 11. Consider a simple gridworld example as shown in Fig. 2. The goal state g is assumed to be absorbing with 
reward 1. Otherwise, actions up, down, left, right lead to the respective neighbored state4 and give reward 0. Although there 
is a strong topological structure in this setting, state aggregation cannot simplify the MDP. MDP homomorphisms work 
better, as they can exploit the symmetry along the main diagonal to reduce the state space up to a factor 2. On the other 
hand, the respective structured MDP only needs four colors (one for each action) to grasp the whole topological structure 
(except the goal state g): Thus, for example, all state-action pairs (s, up) will obtain the same color, and the respective 
translation functions Φs,up,s′,up will map the state above s to the state above s′ . One additional color is needed for the goal 
state.

6.1.2. Continuous state MDPs: discretizations as colorings
The concept of ε-structured MDPs can be straightforwardly generalized to arbitrary state spaces. Then, under the assump-

tion that close states behave similarly according to a Lipschitz- or more generally Hölder-condition for rewards and transition 
probabilities, respectively, an MDP with continuous state space can be turned into a structured MDP by coloring close states 
with the same color. That way, a discretization of the state space also corresponds to a coloring of the state space.

6.2. Regret bounds for colored UCRL2

The following is a generalization of the regret bounds for Ucrl2 to ε-structured MDPs. The theorem gives improved 
(with respect to Ucrl2) bounds if there are only a few parameters to estimate in the MDP to learn. Recall that the diameter
of an MDP is the maximal expected transition time between any two states (choosing an appropriate policy), cf. [6].

Theorem 12. Let M be an ε-structured MDP with finite state space S, finite action space A, transition probability distributions p(·|s, a), 
reward distributions with support in [0, 1] and means r(s, a), coloring function c, and associated translation functions. Assume the 
learner has complete knowledge of state-action pairs ΨK ⊆ S × A, while the state-action pairs in ΨU := S × A \ΨK are unknown and 
have to be learned. However, the learner knows c and all associated translation functions as well as an upper bound B on the size of the 
support of each transition probability distribution in ΨU . Then with probability at least 1 − δ, after any T steps colored Ucrl2

5 gives 
regret upper bounded by

42Dε

√
BCU T log

(
T

δ

)
+ ε(Dε + 2)T ,

where CU is the total number of colors for states in ΨU , and Dε is the diameter of the aggregated ε-structured MDP.

4 For the sake of simplicity, we assume that in border states actions that would leave the environment are simply not available. Using further colors 
these actions could be easily taken into account however.

5 For the sake of simplicity the algorithm was given for the case ΨK =∅. It is obvious how to extend the algorithm when some parameters are known.
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The proof of this theorem is given in Appendix A.

Remark 13. From the proof of Theorem 12, cf. Eq. (A.8), it can be seen that the accumulated reward of the best T -step 
policies when starting in different states cannot deviate by more than Dε . Therefore, also the bias values of each two states 
differ by at most Dε , cf. p. 339 of [19]. Application of Theorem 9.4.1a of [19] then shows that the difference between the 
optimal T -step reward and Tρ∗ is bounded by 2Dε . Hence, when considering the regret with respect to the best (in general 
non-stationary) T -step policy one obtains a bound as in Theorem 12 with an additional additive constant of 2Dε .

Remark 14. For ε = 0, one can also obtain logarithmic bounds analogously to Theorem 4 of [6]. With no additional infor-
mation for the learner one gets the original Ucrl2 bounds (with a slightly larger constant), trivially choosing B to be the 
number of states and assigning each state-action pair an individual color.

Remark 15. Theorem 12 is given for finite state MDPs. However, under the mentioned Lipschitz/Hölder conditions for re-
wards and transition probabilities (cf. Section 6.1.2) and some additional technical assumptions an analogous result can 
be derived for continuous state MDPs, where ε in Theorem 12 is replaced with the precision determined by the Lips-
chitz/Hölder parameters. For details we refer to [20]. We note that the algorithm and the derived results in [20] differ from 
the ones given here in that Dε , the diameter in the discretized MDP, is replaced with the bias span of the optimal policy. 
The reason for this is that the aim of [20] is to derive sublinear regret bounds by eventually choosing a suitable discretiza-
tion. With that respect (an analogon of) Theorem 12 is not very satisfactory, since the regret bound depends on the chosen 
discretization, that is, on the respective diameter of the discretized MDP. Unlike that, as will be seen below, in the restless 
bandit setting we are able to bound the diameter of the respective aggregated ε-structured MDP in a satisfactory way.

7. Constructing the Algorithm II: coloring the T -step representation

Now, we can turn the T -step representation of any restless bandit into an ε-structured MDP as follows. We as-
sign the same color to state-action pairs where the chosen arm is in the same state, that is, we assign colors such 
that c((si, ni)

K
i=1, j) = c((s′

i, n
′
i)

K
i=1, j

′) iff j = j′ , s j = s′
j , and either n j = n′

j or n j, n′
j ≥ T j

mix(ε). The respective trans-
lation functions are chosen to map states (s1, n1 + 1, . . . , s j−1, n j−1 + 1, s, 1, s j+1, n j+1 + 1, . . . , sK , nK + 1) to states 
(s′

1, n
′
1 + 1, . . . , s′

j−1, n
′
j−1 + 1, s, 1, s′

j+1, n
′
j+1 + 1, . . . , s′

K , n′
K + 1). This ε-structured MDP can be learned with colored Ucrl2. 

This is basically our proposed restless bandits algorithm, see Algorithm 2. (The dependence on the horizon T and the mixing 
times T j

mix as input parameters can be eliminated, cf. the proof of Theorem 5 in Section 8.)

Algorithm 2 The restless bandits algorithm.

Input: Confidence parameter δ > 0, the number of states S j and mixing time T j
mix of each arm j, horizon T . 

� Choose ε = 1/
√

T and execute colored Ucrl2 (with confidence parameter δ) on the ε-structured MDP described in Section 7.

8. Proofs

8.1. Proof of the upper bound

We start with bounding the diameter in aggregated ε-structured MDPs corresponding to a restless bandit problem.

Lemma 16. Consider a restless bandit with K aperiodic arms having diameters D j and mixing times T j
mix ( j = 1, . . . , K ). For ε ≤ 1/4, 

the diameter Dε in the respective aggregated ε-structured MDP can be upper bounded by

Dε ≤ 2
⌈

log2

(
4 max

j
D j

)⌉
· ⌈Tmix(ε)

⌉ ·
K∏

j=1

(4D j),

where we set Tmix(ε) := max j T j
mix(ε).

Proof. Let μ j be the stationary distribution of arm j. It is well-known that the expected first return time τ j(s) in state s
satisfies μ j(s) = 1/τ j(s). Set τ j := maxs τ j(s), and τ := max j τ j . Then, τ j ≤ 2D j .

Now consider the following scheme to reach a given state (s j, n j)
K
j=1: First, order the states (s j, n j) descendingly with 

respect to n j . Thus, assume that n j1 > n j2 > . . . > n jK = 1. Take 	Tmix(ε)
 samples from arm j1. (Then each arm will be 
ε-close to the stationary distribution, and the probability of reaching the right state s ji when sampling arm ji afterwards is 
at least μ j (s j ) − ε.) Then sample each arm ji (i = 2, 3, . . . , K ) exactly n j − n j times.
i i i−1 i
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We first show the lemma for ε ≤ μ0 := min j,s μ j(s)/2. As observed before, for each arm ji the probability of reaching the 
right state s ji is at least μ ji (s ji ) − ε ≥ μ ji (s ji )/2. Consequently, the expected number of restarts of the scheme necessary 
to reach a particular state (s j, n j)

K
j=1 is upper bounded by 

∏K
j=1 2/μ j(s j). As each trial takes at most 2	Tmix(ε)
 steps, 

recalling that 1/μ j(s) = τ j(s) ≤ 2D j proves the bound for ε ≤ μ0.
Now assume that ε > μ0. Since Dε ≤ Dε′ for ε > ε′ we obtain a bound of 2	Tmix(ε

′)
 ∏K
j=1(4D j) with ε′ := μ0 = 1/2τ . 

By (1) and our assumption that ε ≤ 1
4 , we have

Tmix
(
ε′) ≤ ⌈

log2
(
1/ε′)⌉ · Tmix(1/4) ≤ ⌈

log2(2τ )
⌉ · Tmix(ε),

which proves the lemma. �
Proof of Theorem 5. First, note that in each arm j the support of the transition probability distribution is upper bounded by 
|S j|, and that the coloring described in Section 7 uses not more than 

∑K
j=1 |S j| 	T j

mix(ε)
 colors. Hence, Theorem 12 with 
CU = ∑K

j=1 |S j | 	T j
mix(ε)
 and B = maxi |Si | shows that the regret is bounded by

42Dε

√√√√√max
i

|Si| ·
K∑

j=1

|S j| ·
⌈

T j
mix(ε)

⌉ · T log

(
T

δ

)
+ ε(Dε + 2)T (5)

with probability ≥ 1 − δ. Since ε = 1/
√

T , one obtains after some minor simplifications the first bound by Lemma 16 and 
recalling (1). Note that when we consider regret with respect to the best T -step policy, by Remark 13 we have an additional 
additive constant of 2Dε in (5), which only slightly increases the numerical constant of the regret bound.

If the horizon T is not known, guessing T using the doubling trick (i.e., executing the algorithm for T = 2i with confi-
dence parameter δ/2i in rounds i = 1, 2, . . .) achieves the bound given in Theorem 5 with worse constants.

Similarly, if Tmix is unknown, one can perform the algorithm in rounds i = 1, 2, . . . of length 2i with confidence param-
eter δ/2i , choosing an increasing function a(t) to guess an upper bound on Tmix at the beginning t of each round. This 
gives a bound of order a(T )3/2

√
T with a corresponding additive constant. In particular, choosing a(t) = log t the regret is 

bounded by

O

(
S

K∏
j=1

(4D j) · max
i

log(Di) · log7/2(T /δ) · √T

)

with probability ≥ 1 − δ. �
8.2. Proof of the lower bound

Proof of Theorem 8. Consider K arms all of which are deterministic cycles of length m and hence m-periodic. Then the 
learner faces m distinct ordinary bandit problems (each corresponding to states of the same period in each cycle) having K
arms. By choosing suitable rewards, each of these bandit problems can be made to force regret of order Ω(

√
K T /m) in the 

T /m steps the learner deals with the problem [4]. Overall, this gives the claimed bound of Ω(
√

mK T ) = Ω(
√

ST ). Adding 
a sufficiently small probability (with respect to the horizon T ) of staying in some state of each arm, one obtains the same 
bounds for aperiodic arms. �
9. The periodic case

Now let us turn to the case where one or more arms are periodic, and let m j be the period of arm j. Note that periodic 
Markov chains do not converge to a stationary distribution. However, taking into account the period of the arms, one can 
generalize our results to the periodic case. Considering in an m j -periodic Markov chain the m j -step transition probabilities 
given by the matrix Pm j , one obtains m j distinct aperiodic classes (subchains depending on the period of the initial state) 
each of which converges to a stationary distribution μ j,� with respective mixing time T j,�

mix(ε), � = 1, 2, . . . , m j . The ε-mixing 
time T j

mix(ε) of the chain then can be defined as

T j
mix(ε) := m j max

�
T j,�

mix(ε).

Obviously, after that many steps each aperiodic class will be ε-close to its stationary distribution when sampling in the 
respective period. That is, sampling after 	T j

mix(ε)
 + � steps (� = 0, . . . , m j − 1) one is ε-close to the stationary distribution 
of one of the m j aperiodic classes. As for aperiodic chains we set T j := T j

( 1 ), cf. Section 2.1.
mix mix 4



R. Ortner et al. / Theoretical Computer Science 558 (2014) 62–76 71
9.1. Algorithm

Due to the possible periodic nature of some arms, in general for obtaining the MDP representation we cannot simply 
aggregate all states (s j, n j), (s′

j, n
′
j) with n j, n′

j ≥ T j
mix(ε) as in the case of aperiodic chains, but aggregate them only if 

additionally n j ≡ n′
j mod m j .

If the periods m j are not known to the learner, one can use the least common denominator (lcd) of 1, 2, . . . , |S j | as 
(multiple of the true) period. Since by the prime number theorem the latter is exponential in |S j | — e.g. [21] shows that 
the lcd of 1, 2, . . . , n is between 2n and 4n if n ≥ 9 — the obtained results for periodic arms show worse dependence on 
the number of states. Of course, in practice one can also obtain improved upper bounds by estimating the period of each 
arm by the greatest common divisor of the observed return times in each state. However, it is not obvious how to obtain 
high probability bounds for the convergence of these estimates to the true period of a Markov chain, even when assuming 
knowledge of the mixing time as in our setting.

9.2. Regret bound and proof

First, concerning (the proof of) Lemma 16 the sampling scheme has to be slightly adapted to the setting of periodic arms 
so that one samples in the right period when trying to reach a particular state, giving slightly worse bounds depending on 
the arms’ periods.

Lemma 17. Consider a restless bandit with K arms having periods m j, diameters D j , and mixing times T j
mix ( j = 1, . . . , K ). For 

ε ≤ 1/4, the diameter Dε in the respective aggregated ε-structured MDP can be upper bounded by

Dε ≤ (
2
⌈

Tmix(ε)
⌉ + lcd(m1,m2, . . . ,mK )

)⌈
log2

(
4 max

j
D j

)⌉
·

K∏
j=1

(4D j),

where we set Tmix(ε) := max j T j
mix(ε).

Proof. Let μ j,� be the stationary distribution of the aperiodic class of period � in arm j. As before, in each subchain 
the expected first return time τ j,�(s) in a state s of period � satisfies μ j,�(s) = 1/τ j,�(s). Set τ j,� := maxs τ j,�(s), and τ :=
max j,� τ j,� . Then, τ j,� ≤ 2D j for � = 1, 2, . . . , m j . (Note that τ j,� counts only steps in the aperiodic subchain of period � and 
considers only states in this chain, while D j considers all steps and all states.)

Now consider the following modified scheme to reach a given state (s j, n j)
K
j=1, assuming that this state is reachable 

(which need not be the case in the periodic setting): First, as before, order the states (s j , n j) descendingly with respect to n j , 
so that n j1 > n j2 > . . . > n jK = 1. Take 	Tmix(ε)
 samples from arm j1. (Then each arm will be ε-close to the stationary 
distribution, and the probability of reaching the right state s ji when sampling arm ji afterwards in the right period is at least 
μ ji (s ji ) − ε.) Unlike in the aperiodic case where we can continue sampling each arm ji (i ≥ 2) exactly n ji−1 − n ji times, 
here we have to take into account that we can hit the right state in each arm only if we sample it in the right period. Thus, 
in order to assure that we can hit each of the states by the above mentioned scheme, we continue sampling arm j1 an 
appropriate (with respect to the current state) number of times to reach the right period. Obviously, this can be done within 
at most lcd(m1, m2, . . . , mK ) steps. Only then we sample each arm ji (i = 2, . . . , K ) exactly n ji−1 − n ji times, guaranteeing 
that the probability of hitting each state s j is at least μ j,�(s j)(s j) − ε, where �(s) denotes the period of state s.

The rest of the proof then is analogous to the proof of Lemma 16. Again, we first show the lemma for ε ≤ μ0 :=
min j,s μ j,�(s)(s)/2. In this case μ j,�(s j)(s j) −ε ≥ μ ji ,�(s j)(s j)/2, and the expected number of restarts of the scheme necessary 
to reach a particular state (s j, n j)

K
j=1 is upper bounded by 

∏K
j=1 2/μ j,�(s j)(s j). As each trial takes at most 2	Tmix(ε)
 +

lcd(m1, . . . , mK ) steps, recalling that 1/μ j,�(s)(s) = τ j,�(s)(s) ≤ 2D j proves the bound for ε ≤ μ0.
If ε > μ0, we can again use that Dε ≤ Dε′ for ε > ε′ . Then setting ε′ := μ0 = 1/2τ we obtain a bound of (2	Tmix(ε

′)
 +
lcd(m1, . . . , mK )) 

∏K
j=1(4D j). Application of (1) gives

Tmix
(
ε′) ≤ ⌈

log2
(
1/ε′)⌉ Tmix(1/4) ≤ ⌈

log2(4τ )
⌉

Tmix(ε)

and proves the lemma. �
Concerning Theorem 5, the proof given in Section 8 still holds for the periodic case. In particular, in spite of the different 

aggregation the bound STmix on the number of needed colors used in the original proof is still valid. The only difference 
in the proofs is that to bound the diameter now Lemma 16 is replaced with Lemma 17, giving slightly worse bounds 
when periods of the single arms are known. As already discussed above, when the periods are unknown, the learner can 
upper bound them by lcd(1, 2, . . . , S), which results in bounds exponential in the number of states. Still, these bounds have 
optimal dependence on the horizon T .
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10. Extensions and outlook

Unknown state space. If (the size of) the state space of the individual arms is unknown, some additional exploration of 
each arm will sooner or later determine the state space. Thus, we may execute our algorithm on the known state space 
where between two episodes we sample each arm until all known states have been sampled at least once. The additional 
exploration is upper bounded by O (log T ), as there are only O (log T ) many episodes (cf. Appendix A.4), and the time of 
each exploration phase can be bounded with known results. That is, the expected number of exploration steps needed until 
all states of an arm j have been observed is upper bounded by D j log(3|S j |) (cf. Theorem 11.2 of [16]), while the deviation 
from the expectation can be dealt with by Markov inequality or results from [22]. That way, one obtains bounds as in 
Theorem 5 for the case of unknown state space.

Improving the bounds. All parameters considered, there is still a large gap between the lower and the upper bound on 
the regret. As a first step, it would be interesting to find out whether the dependence on the diameter of the arms is 
necessary. Also, the current regret bounds do not make use of the interdependency of the transition probabilities in the 
Markov chains and treat n-step and n′-step transition probabilities independently. Finally, a related open question is how 
to obtain estimates and upper bounds on mixing times. Whereas it is not easy to obtain upper bounds on the mixing time 
in general, for reversible Markov chains Tmix can be linearly upper bounded by the diameter, cf. Lemma 15 in Chapter 4 
of [23]. While it is possible to compute an upper bound on the diameter of a Markov chain from samples of the chain, we 
did not succeed in deriving any useful results on the quality of such bounds.

More general models. After considering bandits with i.i.d. and Markov arms, the next natural step is to consider more 
general time-series distributions. Generalizations are not straightforward: already for the case of Markov chains of order 
(or memory) 2 the MDP representation of the problem (Section 5) breaks down, and so the approach taken here cannot be 
easily extended. Stationary ergodic distributions are an interesting more general case, for which the first question is whether 
it is possible to obtain asymptotically sublinear regret. Further important generalizations include problems in which arms 
are dependent and possibly non-stationary. For example, if each arm is a model of the environment, and “pulling” an arm 
means executing a policy that is optimal for the selected model, then there is both dependence between the arms and 
non-stationarity that results from attempting to learn the parameters of the models; for details and some results on this 
problem see [24–26].
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Appendix A. Proof of Theorem 12

The proof is an adaptation of the proof of the original regret bound for Ucrl2, that is, Theorem 2 in [6]. We therefore 
follow the main steps of the proof of Theorem 2 in [6], and often refer to the original proof for technical details.

Let us first give a brief overview. In Appendix A.1 we first define the regret 
k of an episode k, so that we can bound the 
regret by the sum over the 
k and another term dealing with the randomness of the observed rewards. In Appendix A.2 we 
handle the regret due to failing confidence intervals. This is the only part of the proof where the adaptations of the original 
proof are not straightforward and a more refined argument is necessary. In Appendix A.3 and Appendix A.4 we bound the 
difference of the optimal average reward and the mean reward of each visited state, using the confidence intervals for the 
rewards and the transition probabilities. In the final Appendix A.5 we conclude by summing up the individual regret terms.

Before starting, we recall some notation. Let M denote the true MDP with transition probabilities p(·|s, a), mean rewards 
r(s, a), and optimal average reward ρ∗ . Mk is the set of plausible MDPs whose transition probabilities p̃(·|s, a) and rewards 
r̃(s, a) satisfy (2) and (3), where p̂(·|s, a) and r̂(s, a) are the estimated transition probabilities and rewards, respectively. 
Further, let M̃k be the optimistic MDP chosen by the algorithm from the set Mk , and π̃k the policy chosen by the algorithm 
in episode k.

A.1. Splitting into episodes

Let vk(s, a) be the number of times action a has been chosen in state s in episode k, and set


k :=
∑
s,a

vk(s,a)
(
ρ∗ − r(s,a)

)
.

Using Hoeffding’s inequality to deal with the randomness of the observed rewards one can show (cf. Section 4.1 of [6]) that 
with probability at least 1 − δ

12T 5/4 the regret after T steps is upper bounded by

m∑

k +

√
5

8
T log

(
8T

δ

)
. (A.1)
k=1
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A.2. Failing confidence intervals

Concerning the regret with respect to the true MDP M being not contained in the set of plausible MDPs Mk , we cannot 
use the same argument (that is, Lemma 17 in Appendix C.1) as in [6], since the random variables we consider for rewards 
and transition probabilities are independent, yet not identically distributed.

Instead, fix a state-action pair (s, a), let S(s, a) be the set of states s′ with p(s′|s, a) > 0 and recall that r̂(s, a) and 
p̂(·|s, a) are the estimates for rewards and transition probabilities calculated from all samples of state-action pairs of the 
same color c(s, a). Now assume that at step t there have been n > 0 samples of state-action pairs of color c(s, a) and that 
in the i-th sample action ai has been chosen in state si and a transition to state s′

i has been observed (i = 1, . . . , n). Then∥∥p̂(·|s,a) −E
[

p̂(·|s,a)
]∥∥

1 =
∑

s′∈S(s,a)

∣∣p̂
(
s′∣∣s,a

) −E
[

p̂
(
s′∣∣s,a

)]∣∣
≤ sup

x∈{−1,1}|S(s,a)|

∑
s′∈S(s,a)

(
p̂
(
s′∣∣s,a

) −E
[

p̂
(
s′∣∣s,a

)])
x
(
s′)

= sup
x∈{−1,1}|S(s,a)|

1

n

n∑
i=1

(
x
(
φsi ,ai ,s,a

(
s′

i

)) −
∑

s′
p
(
s′∣∣si,ai

) · x
(
φsi ,ai ,s,a

(
s′))). (A.2)

For fixed x ∈ {−1, 1}|S(s,a)| ,

Xi := x
(
φsi ,ai ,s,a

(
s′

i

)) −
∑

s′
p
(
s′|si,ai

) · x
(
φsi ,ai ,s,a

(
s′))

is a martingale difference sequence with |Xi | ≤ 2, so that by Azuma–Hoeffding inequality (e.g., Lemma 10 in [6]), 
Pr{∑n

i=1 Xi ≥ θ} ≤ exp(−θ2/8n) and in particular

Pr

{
n∑

i=1

Xi ≥
√

56Bn log

(
2tCU

δ

)}
≤

(
δ

2tCU

)7B

<
δ

2B 20t7CU
.

Recalling that by assumption |S(s, a)| ≤ B , a union bound over all sequences x ∈ {0, 1}|S(s,a)| then shows from (A.2) that

Pr

{∥∥p̂(·|s,a) −E
[

p̂(·|s,a)
]∥∥

1 ≥
√

56B

n
log(2CU t/δ)

}
≤ δ

20t7CU
. (A.3)

Concerning the rewards, as in the proof of Lemma 17 in Appendix C.1 of [6] — but now using Hoeffding’s inequality for 
independent and not necessarily identically distributed random variables — we have that

Pr

{∣∣r̂(s,a) −E
[
r̂(s,a)

]∣∣ ≥
√

7

2n
log(2CU t/δ)

}
≤ δ

60t7CU
. (A.4)

A union bound over all t possible values for n and all CU colors of states in ΨU shows that the confidence intervals in (A.3)
and (A.4) hold with probability at least 1 − δ

15t6 for the actual counts N(c(s, a)) and all state-action pairs (s, a). (Note that 
Eqs. (A.3) and (A.4) are the same for state-action pairs of the same color.)

By linearity of expectation, E[r̂(s, a)] can be written as 1
n

∑n
i=1 r(si, ai) for the sampled state-action pairs (si, ai). Since 

the (si, ai) are assumed to have the same color c(s, a), it holds that |r(si, ai) − r(s, a)| < ε and hence |E[r̂(s, a)] − r(s, a)| < ε. 
Similarly, ‖E[p̂(·|s, a)] − p(·|s, a)‖1 < ε. Together with (A.3) and (A.4) this shows that with probability at least 1 − δ

15t6 for 
all state-action pairs (s, a)

∣∣r̂(s,a) − r(s,a)
∣∣ < ε +

√
7

2N(c(s,a))
log(2CU t/δ), (A.5)

∥∥p̂(·|s,a) − p(·|s,a)
∥∥

1 < ε +
√

56B

N(c(s,a))
log(2CU t/δ). (A.6)

Thus, the true MDP is contained in the set of plausible MDPs M(t) at step t with probability at least 1 − δ

15t6 , just as in 
Lemma 17 of [6]. Then as in Section 4.2 of [6], bounding the sum by a respective integral we have 

∑T
�T 1/4�+1

δ

15t6 ≤ δ

12T 5/4 , 
so that

m∑
k=1


k1M /∈Mk ≤
T∑

t=1

t1M /∈M(t) ≤
�T 1/4�∑

t=1

t1M /∈M(t) +
T∑

t=�T 1/4�+1

t1M /∈M(t) ≤ √
T (A.7)

holds with probability at least 1 − δ
5/4 .
12T
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A.3. Episodes with M ∈Mk

Now assuming that the true MDP M is in Mk , we first reconsider extended value iteration [6]. In Section 4.3.1 of [6] it is 
shown that for the state values ui(s) in the i-th iteration it holds that maxs ui(s) − mins ui(s) ≤ D , where D is the diameter 
of the MDP. Now we want to replace D with the diameter Dε of the aggregated MDP. For this, first note that for any two 
states s, s′ which are aggregated we have by definition of the aggregated MDP that ui(s) = ui(s′). As it takes at most Dε

steps on average to reach any aggregated state, repeating the argument of Section 4.3.1 of [6] shows that

max
s

ui(s) − min
s

ui(s) ≤ Dε. (A.8)

Let P̃ k := (p̃k(s′|s, π̃k(s)))s,s′ be the transition matrix of π̃k on M̃k , and vk := (vk(s, π̃k(s)))s the row vector of visit counts 
in episode k for each state and the corresponding action chosen by π̃k . Then as shown in Section 4.3.1 of [6], we have by 
definition and convergence6 of (extended) value iteration


k ≤ vk( P̃ k − I)wk +
∑
s,a

vk(s,a)
(
r̃k(s,a) − r(s,a)

)
,

where wk is the normalized state value vector with wk(s) := u(s) − (mins u(s) − maxs u(s))/2, so that ‖wk‖ ≤ Dε
2 . Now for 

(s, a) ∈ ΨK we have r̃k(s, a) = r(s, a), while for (s, a) ∈ ΨU the term r̃k(s, a) − r(s, a) ≤ |r̃k(s, a) − r̂k(s, a)| + |r(s, a) − r̂k(s, a)|
is bounded according to (2) and (A.5), as we assume that M̃k, M ∈ Mk . Summarizing state-action pairs of the same color 
we get


k ≤ vk( P̃ k − I)wk + 2
∑

c∈C(ΨU )

vk(c) ·
(
ε +

√
7 log(2CU tk/δ)

2 max{1, Nk(c)}
)

,

where C(ΨU ) is the set of colors of state-action pairs in ΨU . Let Tk be the length of episode k. Then noting that N ′
k(c) :=

max{1, Nk(c)} ≤ tk ≤ T we obtain


k ≤ vk( P̃ k − I)wk + 2εTk +
√

14 log

(
2CU T

δ

) ∑
c∈C(ΨU )

vk(c)√
N ′

k(c)
. (A.9)

A.4. The true transition matrix

Let P k := (p(s′|s, π̃k(s)))s,s′ be the transition matrix of π̃k in the true MDP M . We split

vk( P̃ k − I)wk = vk( P̃ k − P k)wk + vk(P k − I)wk. (A.10)

By assumption M̃k, M ∈Mk , so that using (3) and (A.6) the first term in (A.10) can be bounded by (cf. Section 4.3.2 of [6])

vk( P̃ k − P k)wk ≤
∑
s,a

vk(s,a) · ∥∥p̃k(·|s,a) − p(·|s,a)
∥∥

1 · ‖wk‖∞

≤ 2
∑

c∈C(ΨU )

vk(c) ·
(
ε +

√
56B log(2CU T /δ)

N ′
k(c)

)
· Dε

2

≤ εDε Tk + Dε

√
56B log

(
2CU T

δ

) ∑
c∈C(ΨU )

vk(c)√
N ′

k(c)
, (A.11)

since — as for the rewards — the contribution of state-action pairs in ΨK is 0.
Concerning the second term in (A.10), we define the sequence Xt := (p(·|st, at) − est+1)wk(t)1M∈Mk(t) , where ei denotes 

the unit vector with 1 in coordinate i, and k(t) is the index of the episode which contains step t . Then as shown in 
Section 4.3.2 of [6], we can write

vk(P k − I)wk =
tk+1−1∑

tk

Xt + wk(stk+1) − wk(stk ) ≤
tk+1−1∑

tk

Xt + Dε.

6 For the sake of simplicity, we neglect the error by value iteration, which is explicitly considered in Section 4.3.1 of [6]. Taking into account this error 
only slightly deteriorates the constant in our bound.
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Further, Xt is a martingale difference sequence with |Xt | ≤ Dε , so that application of Azuma–Hoeffding inequality (cf. Sec-
tion 4.3.2 of [6]) gives that with probability at least 1 − δ

12T 5/4

m∑
k=1

vk(P k − I)wk1M∈Mk ≤ Dε

√
5

2
T log

(
8T

δ

)
+ Dε CU log2

(
8T

CU

)
. (A.12)

Here m is the number of episodes, and the bound m ≤ CU log2(8T /CU ) used to obtain (A.12) is derived analogously to 
Appendix C.2 of [6].

A.5. Summing over episodes with M ∈Mk

To conclude, we sum (A.9) over all episodes with M ∈Mk , using (A.10), (A.11), and (A.12), which yields that with 
probability at least 1 − δ

12T 5/4

m∑
k=1


k1M∈Mk ≤ Dε

√
5

2
T log

(
8T

δ

)
+ Dε CU log2

(
8T

CU

)
+ ε(Dε + 2)T

+
(

Dε

√
56B log

(
2CU T

δ

)
+

√
14 log

(
2CU T

δ

))
m∑

k=1

∑
c∈C(ΨU )

vk(c)√
N ′

k(c)
. (A.13)

As shown in Section 4.3.3 and Appendix C.3 of [6], using that vk(c) ≤ N ′
k(c) for all colors c and applying Jensen’s inequality, 

one obtains∑
c∈C(ΨU )

∑
k

vk(c)√
N ′

k(c)
≤ (

√
2 + 1)

√
CU T .

Thus, evaluating (A.1) by summing 
k over all episodes, by (A.7) and (A.13) the regret is upper bounded with probability 
≥ 1 − δ

4T 5/4 by

m∑
k=1


k1M /∈Mk +
m∑

k=1


k1M∈Mk +
√

5

8
T log

(
8T

δ

)

≤
√

5

8
T log

(
8T

δ

)
+ √

T + Dε

√
5

2
T log

(
8T

δ

)
+ Dε CU log2

(
8T

CU

)

+ ε(Dε + 2)T + 3(
√

2 + 1)Dε

√
14BCU T log

(
2CU T

δ

)
.

Further simplifications as in Appendix C.4 of [6] finish the proof. �
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