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Résumé

Les travaux présentés sont dédiés à la possibilité de faire de l’inférence statis-
tique à partir de données séquentielles. Le problème est le suivant. Étant don-
née une suite d’observations x1,...,xn,... , on cherche à faire de l’inférence sur le
processus aléatoire ayant produit la suite. Plusieurs problèmes, qui d’ailleurs
ont des applications multiples dans différents domaines des mathématiques et
de l’informatique, peuvent être formulés ainsi. Par exemple, on peut vouloir
prédire la probabilité d’apparition de l’observation suivante, xn+1 (le problème
de prédiction séquentielle); ou répondre à la question de savoir si le processus
aléatoire qui produit la suite appartient à un certain ensemble H0 versus appar-
tient à un ensemble différent H1 (test d’hypothèse) ; ou encore, effectuer une
action avec le but de maximiser une certain fonction d’utilité. Dans chacun
de ces problèmes, pour rendre l’inférence possible il faut d’abord faire certaines
hypothèses sur le processus aléatoire qui produit les données. La question cen-
trale adressée dans les travaux présentés est la suivante : sous quelles hypothèses
l’inférence est-elle possible ? Cette question est posée et analysée pour des prob-
lèmes d’inférence différents, parmi lesquels se trouvent la prédiction séquentielle,
les tests d’hypothèse, la classification et l’apprentissage par renforcement.
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Abstract

Given a growing sequence of observations x1,...,xn,... , one is required, at each
time step n, to make some inference about the stochastic mechanism generating
the sequence. Several problems that have numerous applications in different
branches of mathematics and computer science can be formulated in this way.
For example, one may want to forecast probabilities of the next outcome xn+1

(sequence prediction); to make a decision on whether the mechanism generating
the sequence belongs to a certain family H0 versus it belongs to a different
family H1 (hypothesis testing); to take an action in order to maximize some
utility function.

In each of these problems, as well as in many others, in order to be able to
make inference, one has to make some assumptions on the probabilistic mecha-
nism generating the data. Typical assumptions are that xi are independent and
identically distributed, or that the distribution generating the sequence belongs
to a certain parametric family. The central question addressed in this work is:
under which assumptions is inference possible? This question is considered for
several problems of inference, including sequence prediction, hypothesis testing,
classification and reinforcement learning.
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Chapter 1

Introduction

This manuscript summarizes my work on the problem of learnability in mak-
ing sequential inference. The problem is as follows. Given a growing sequence
of observations x1,...,xn,... , one is required, at each time step n, to make some
inference about the stochastic mechanism generating the sequence. Several prob-
lems that have numerous applications in different branches of mathematics and
computer science can be formulated in this way. For example, one may want to
forecast probabilities of the next outcome xn+1 (sequence prediction); to make a
decision on whether the mechanism generating the sequence belongs to a certain
family H0 versus it belongs to a different family H1 (hypothesis testing); to take
an action in order to maximize some utility function. In each of these problems,
as well as in many others, in order to be able to make inference, one has to make
some assumptions on the probabilistic mechanism generating the data. Typical
assumptions are that xi are independent and identically distributed, or that the
distribution generating the sequence belongs to a certain parametric family. The
central question addressed in this work is: under which assumptions is inference
possible? This question is considered for several problems of inference, including
sequence prediction, hypothesis testing, classification and reinforcement learn-
ing.

The motivation for studying such questions is as follows. There are numer-
ous applications of the problems of sequential inference considered, including the
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analysis of data coming from a stock market, biological databases, network traf-
fic, surveillance, etc. Moreover, new applications spring up regularly. Clearly,
each application requires its own set of assumptions or its own model: indeed, a
model that describes well DNA sequences probably should not be expected to de-
scribe a network traffic stream as well. At the same time, the methods developed
for sequential data analysis, for example, for sequence prediction, are typically
limited to a restricted set of models, the construction of which is driven not
so much by applications as by the availability of mathematical and algorithmic
tools. For example, much of the non-parametric analysis in sequence prediction
and the problems of finding an optimal behaviour in an unknown environment
is limited to finite-state models, such as Markov or hidden Markov models. One
approach to start addressing this problem is to develop a theory that would al-
low one to check whether a given model is feasible, in the sense that it allows
for the existence of a solution to the target problem of inference. Another ques-
tion is how to find a solution given a model in a general form. This manuscript
summarizes some first steps I have made in solving these general problems.

The most important results presented here are as follows. For the problem
of hypothesis testing, I have obtained a topological characterization (necessary
and sufficient conditions) of those (composite) hypotheses H0⊂ E that can be
consistently tested against E\H0, where E is the set of all stationary ergodic
discrete-valued process measures. The developed approach, which is based on
empirical estimates of the distributional distance, has allowed me to obtain con-
sistent procedures for change point estimation, process classification and clus-
tering, under the only assumption that the data (real-valued, in this case) is
generated by stationary ergodic distributions: a setting that is much more gen-
eral than those in which consistent procedures were known before. I have also
demonstrated that a consistent test for homogeneity does not exist for the gen-
eral case of stationary ergodic (discrete-valued) sequences. For the problem of
sequence prediction, I have shown that if there is a consistent predictor for a
set of process distributions C, then there is a Bayesian predictor consistent for
this set. This is a no-assumption result: the distributions in C can be arbi-
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trary (non-i.i.d., non-stationary, etc.) and the set itself does not even have to
be measurable. I have also obtained several descriptions (sufficient conditions)
of those sets C of process distributions for which consistent predictors exist. For
the problem of selecting an optimal strategy in a reactive environment (perhaps,
the most general inference problem considered) I have identified some sufficient
conditions on the environments under which it is possible to find a universal
asymptotically optimal strategy.

Organization of this manuscript

Each of the subsequent chapters is devoted to a specific group of inference prob-
lems. These chapters are essentially constructed from the papers listed below,
which are streamlined and endowed with unified introductions and notation.
References to the corresponding papers follow the title of of each chapter or
section. While trying to keep the contents concise, I have decided to include all
proofs (in appendices to the chapters) to make the manuscript self-contained.
The contents of the Section 5.1 is extracted from my Ph.D. thesis; the rest of
the work is posterior.
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Chapter 2

Sequence prediction [R1, R3, R8]

The problem is sequence prediction in the following setting. A sequence x1,...,xn,...

of discrete-valued observations is generated according to some unknown proba-
bilistic law (measure) µ. After observing each outcome, it is required to give the
conditional probabilities of the next observation. The measure µ is unknown.
We are interested in constructing predictors ρ whose conditional probabilities
ρ(·|x1,...,xn) converge (in some sense) to the “true” µ-conditional probabilities
µ(·|x1,...,xn), as the sequence of observations increases (n→∞). In general, this
goal is impossible to achieve if nothing is known about the measure µ generating
the sequence. In other words, one cannot have a predictor whose error goes to
zero for any measure µ. The problem becomes tractable if we assume that the
measure µ generating the data belongs to some known class C. The main general
problems considered in this chapter are as follows.

(i) Given a set C of process measures, what are the conditions on C under
which there exists a measure ρ that predicts every µ∈C? (Section 2.3)

(ii) Is there a general way to construct such a measure ρ? What form should
ρ have? (Section 2.2)

(iii) Given two process measures µ and ρ, what are the conditions on them
under which ρ is a predictor for µ? (Section 2.4)
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(iv) Given a set C of process measures, what are the conditions on C under
which there exists a measure ρ which predicts every measure ν that is
predicted by at least one measure µ∈C? (Section 2.5)

The last question is explained by the following consideration. Since a predictor
ρ that we wish to construct is required, on each time step, to give conditional
probabilities ρ(·|x1,...,xn) of the next outcome given the past, for each possible
sequence of past observations x1,...,xn, the predictor ρ itself defines a measure on
the space of one-way infinite sequences. This enables us to pose similar questions
about the measures µ generating the data and predictors.
The motivation for studying predictors for arbitrary classes C of processes
is two-fold. First of all, the problem of prediction has numerous applications
in such diverse fields as data compression, market analysis, bioinformatics, and
many others. It seems clear that prediction methods constructed for one appli-
cation cannot be expected to be optimal when applied to another. Therefore, an
important question is how to develop specific prediction algorithms for each of
the domains. Apart from this, sequence prediction is one of the basic ingredients
for constructing intelligent systems. Indeed, in order to be able to find optimal
behaviour in an unknown environment, an intelligent agent must be able, at the
very least, to predict how the environment is going to behave (or, to be more
precise, how relevant parts of the environment are going to behave). Since the
response of the environment may in general depend on the actions of the agent,
this response is necessarily non-stationary for explorative agents. Therefore, one
cannot readily use prediction methods developed for stationary environments,
but rather has to find predictors for the classes of processes that can appear as
a possible response of the environment.

To evaluate the quality of prediction we will mostly use expected (with re-
spect to data) average (over time) Kullback-Leibler divergence, as well as total
variation distance (see Section 2.1 for definitions). Prediction in total variation
is a very strong notion of performance; in particular, it is not even possible to
predict an arbitrary i.i.d. Bernoulli distribution in this sense. Prediction in ex-
pected average KL divergence is much weaker and therefore more practical, but
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it is also more difficult to study, as is explained below.
Next we briefly describe some of the answers to the questions (i)-(iv)

posed above that we have obtained. It is well-known [11, 46] (see also Theo-
rem 2.2 below) that a measure ρ predicts a measure µ in total variation if and
only if µ is absolutely continuous with respect to ρ. This answers question (ii)

for prediction in total variation. Moreover, since in probability theory we know
virtually everything about absolute continuity, this fact makes it relatively easy
to answer the rest of the questions for this measure of performance. We ob-
tain (Theorem 2.31) two characterizations of those sets C for which consistent
predictors exist (question (i)): one of them is separability (with respect to total
variation distance) and the other is an algebraic condition based on the notion of
singularity of measures. We also show that question (iv) is equivalent two ques-
tions (i) and (ii) for prediction in total variation. Perhaps more importantly, it
turns out that whenever there is a predictor that predicts every measure µ∈C,
there exists a Bayesian predictor with a countably discrete prior (concentrated on
C) that predicts every measure µ∈C as well. This provides an answer to question
(ii). We show (Theorems 2.7, 2.35) that this property also holds to prediction in
expected average KL divergence. In both cases (prediction in total variation and
in KL divergence) this is a no-assumption result: the set C can be completely
arbitrary (it does not even have to be measurable). We also obtain sufficient
conditions, expressed in terms of separability, that provide answers to questions
(i) and (iv) for prediction in expected average KL divergence. To provide an
answer to question (ii) we find a suitable generalization of the notion of absolute
continuity (a requirement which is stronger than local absolute continuity, but
much weaker than absolute continuity proper) under which a measure ρ predicts
a measure µ in expected average KL divergence (Section 2.4), and also use this
condition to obtain another characterization that addresses the question (i).

The content of this chapter is organized as follows. Section 2.1 provides
notation, definition and auxiliary results. In Section 2.2 we show that if there is a
predictor that is consistent (in either KL divergence or total variation) for every
µ in C, then there exists a Bayesian predictor with a discrete prior which also
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has this consistency property. Several sufficient conditions on the set C for the
existence of a consistent predictor are provided in Section 2.3. These conditions
include separability of C (with respect to appropriate topologies). In Section 2.4
we address the question of what are the conditions on a measure ρ under which it
is a consistent predictor for a single measure µ in KL divergence. Some sufficient
conditions are found, that generalize absolute continuity in a natural way.

Finally, in Section 2.5 we turn to the non-realizable version of the sequence
prediction problem (question (iv) above); we show that is different from the
realizable version if we consider prediction in KL divergence, and obtain some
analogues and generalizations of the results on the realizable problem for the
non-realizable version.

2.1 Notation and definitions

Let X be a finite set. The notation x1..n is used for x1,...,xn. We consider
stochastic processes (probability measures) on Ω:=(X∞,F) where F is the sigma-
field generated by the cylinder sets [x1..n], xi ∈X,n∈N and [x1..n] is the set of
all infinite sequences that start with x1..n. For a finite set A denote |A| its
cardinality. We use Eµ for expectation with respect to a measure µ.

Next we introduce the criteria of the quality of prediction used in this chap-
ter. For two measures µ and ρ we are interested in how different the µ- and
ρ-conditional probabilities are, given a data sample x1..n. Introduce the (condi-
tional) total variation distance

v(µ,ρ,x1..n) :=sup
A∈F
|µ(A|x1..n)−ρ(A|x1..n)|.

Definition 2.1. Say that ρ predicts µ in total variation if

v(µ,ρ,x1..n)→0 µ a.s.

This convergence is rather strong. In particular, it means that ρ-conditional
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probabilities of arbitrary far-off events converge to µ-conditional probabilities.
Recall that µ is absolutely continuous with respect to ρ if (by definition) µ(A)>0

implies ρ(A)> 0 for all A∈F. Moreover, ρ predicts µ in total variation if and
only if µ is absolutely continuous with respect to ρ:

Theorem 2.2 ([11, 46]). If ρ, µ are arbitrary probability measures on (X∞,F),
then ρ predicts µ in total variation if and only if µ is absolutely continuous with
respect to ρ.

Thus, for a class C of measures there is a predictor ρ that predicts every
µ∈C in total variation if and only if every µ∈C has a density with respect to
ρ. Although such sets of processes are rather large, they do not include even
such basic examples as the set of all Bernoulli i.i.d. processes. That is, there is
no ρ that would predict in total variation every Bernoulli i.i.d. process measure
δp, p∈ [0,1], where p is the probability of 0 (see the Bernoulli i.i.d. example in
Section 2.2.2 for a more detailed discussion). Therefore, perhaps for many (if
not most) practical applications this measure of the quality of prediction is too
strong, and one is interested in weaker measures of performance.

For two measures µ and ρ introduce the expected cumulative Kullback-Leibler
divergence (KL divergence) as

δn(µ,ρ) :=Eµ
n∑
t=1

∑
a∈X

µ(xt=a|x1..t−1)log
µ(xt=a|x1..t−1)

ρ(xt=a|x1..t−1)
, (2.1)

In words, we take the expected (over data) average (over time) KL divergence
between µ- and ρ-conditional (on the past data) probability distributions of the
next outcome.

Definition 2.3. Say that ρ predicts µ in expected average KL divergence if

1

n
dn(µ,ρ)→0.

This measure of performance is much weaker, in the sense that it requires
good predictions only one step ahead, and not on every step but only on average;
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also, the convergence is not with probability 1, but in expectation. With predic-
tion quality so measured, predictors exist for relatively large classes of measures;
most notably, [78] provides a predictor which predicts every stationary process in
expected average KL divergence. A simple but useful identity that we will need
(in the context of sequence prediction introduced also by [78]) is the following

dn(µ,ρ)=−
∑

x1..n∈Xn

µ(x1..n)log
ρ(x1..n)

µ(x1..n)
, (2.2)

where on the right-hand side we have simply the KL divergence between measures
µ and ρ restricted to the first n observations.

Thus, the results of the following sections will be established with respect
to two very different measures of prediction quality, one of which is very strong
and the other rather weak. This suggests that the facts established reflect some
fundamental properties of the problem of prediction, rather than those pertinent
to particular measures of performance. On the other hand, it remains open to
extend the results of this section to different measures of performance (e.g., to
those introduced in Section 2.4).

The following sets of process measures will be used repeatedly in the exam-
ples.

Definition 2.4. Consider the following classes of process measures: P is the set
of all process measures, D is the set of all degenerate discrete process measures, S
is the set of all stationary processes and Mk is the set of all stationary measures
with memory not greater than k (k-order Markov processes, with B :=M0 being
the set of all i.i.d. processes):

D :={µ∈P :∃x∈X∞ µ(x)=1}, (2.3)

S :={µ∈P :∀n,k≥1∀a1..n∈Xn µ(x1..n=a1..n)=µ(x1+k..n+k=a1..n)}, (2.4)
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Mk :={µ∈S :∀n≥k ∀a∈X∀a1..n∈Xn

µ(xn+1 =a|x1..n=a1..n)=µ(xk+1 =a|x1..k=an−k+1..n)}, (2.5)

B :=M0. (2.6)

Abusing the notation, we will sometimes use elements of D and X∞ in-
terchangeably. The following (simple and well-known) statement will be used
repeatedly in the examples.

Lemma 2.5. For every ρ∈P there exists µ∈D such that dn(µ,ρ)≥nlog|X| for
all n∈N.

Proof. Indeed, for each n we can select µ(xn = a) = 1 for a∈X that minimizes
ρ(xn=a|x1..n−1), so that ρ(x1..n)≤|X|−n.

2.2 If there exists a consistent predictor then there

exists a consistent Bayesian predictor with a

discrete prior [R3]

In this section we show that if there is a predictor that predicts every µ in
some class C, then there is a Bayesian mixture of countably many elements
from C that predicts every µ∈C too. This is established for the two notions of
prediction quality that were introduced: total variation and expected average
KL divergence.

2.2.1 Introduction and related work

If the class C of measures is countable (that is, if C can be represented as C :=

{µk : k ∈ N}), then there exists a predictor which performs well for any µ ∈
C. Such a predictor can be obtained as a Bayesian mixture ρS :=

∑
k∈Nwkµk,

where wk are summable positive real weights, and it has very strong predictive
properties; in particular, ρS predicts every µ∈C in total variation distance, as
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follows from the result of [11]. Total variation distance measures the difference
in (predicted and true) conditional probabilities of all future events, that is, not
only the probabilities of the next observations, but also of observations that
are arbitrary far off in the future (see formal definitions in Section 2.1). In
the context of sequence prediction the measure ρS (introduced in [92]) was first
studied by [85]. Since then, the idea of taking a convex combination of a finite or
countable class of measures (or predictors) to obtain a predictor permeates most
of the research on sequential prediction (see, for example, [18]) and more general
learning problems (see [41] as well as Chapter 4 of this manuscript). In practice,
it is clear that, on the one hand, countable models are not sufficient, since already
the class {µp : p∈ [0,1]} of Bernoulli i.i.d. processes, where p is the probability
of 0, is not countable. On the other hand, prediction in total variation can
be too strong to require: predicting probabilities of the next observation may
be sufficient, maybe even not on every step but in the Cesaro sense. A key
observation here is that a predictor ρS =

∑
wkµk may be a good predictor not

only when the data is generated by one of the processes µk, k∈N, but when it
comes from a much larger class. Let us consider this point in more detail. Fix
for simplicity X={0,1}. The Laplace predictor

λ(xn+1 =0|x1,...,xn)=
#{i≤n :xi=0}+1

n+|X|
(2.7)

predicts any Bernoulli i.i.d. process: although convergence in total variation dis-
tance of conditional probabilities does not hold, predicted probabilities of the
next outcome converge to the correct ones. Moreover, generalizing the Laplace
predictor, a predictor λk can be constructed for the classMk of all k-order Markov
measures, for any given k. As was found by [78], the combination ρR :=

∑
wkλk

is a good predictor not only for the set ∪k∈NMk of all finite-memory processes,
but also for any measure µ coming from a much larger class: that of all sta-
tionary measures on X∞. Here prediction is possible only in the Cesaro sense
(more precisely, ρR predicts every stationary process in expected time-average
Kullback-Leibler divergence, see definitions below). The Laplace predictor itself
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can be obtained as a Bayes mixture over all Bernoulli i.i.d. measures with uni-
form prior on the parameter p (the probability of 0). However the same (asymp-
totic) predictive properties are possessed by a Bayes mixture with a countably
supported prior which is dense in [0,1] (e.g., taking ρ :=

∑
wkδk where δk,k∈N

ranges over all Bernoulli i.i.d. measures with rational probability of 0). For a
given k, the set of k-order Markov processes is parametrized by finitely many
[0,1]-valued parameters. Taking a dense subset of the values of these parameters,
and a mixture of the corresponding measures, results in a predictor for the class
of k-order Markov processes. Mixing over these (for all k∈N) yields, as in [78],
a predictor for the class of all stationary processes. Thus, for the mentioned
classes of processes, a predictor can be obtained as a Bayes mixture of countably
many measures in the class. An additional reason why this kind of analysis is
interesting is because of the difficulties arising in trying to construct Bayesian
predictors for classes of processes that can not be easily parametrized. Indeed, a
natural way to obtain a predictor for a class C of stochastic processes is to take
a Bayesian mixture of the class. To do this, one needs to define the structure
of a probability space on C. If the class C is well parametrized, as is the case
with the set of all Bernoulli i.i.d. process, then one can integrate with respect to
the parametrization. In general, when the problem lacks a natural parametriza-
tion, although one can define the structure of the probability space on the set
of (all) stochastic process measures in many different ways, the results one can
obtain will then be with probability 1 with respect to the prior distribution (see,
for example, [43]). Pointwise consistency cannot be assured (see, for example,
[29]) in this case, meaning that some (well-defined) Bayesian predictors are not
consistent on some (large) subset of C. Results with prior probability 1 can be
hard to interpret if one is not sure that the structure of the probability space
defined on the set C is indeed a natural one for the problem at hand (whereas
if one does have a natural parametrization, then usually results for every value
of the parameter can be obtained, as in the case with Bernoulli i.i.d. processes
mentioned above). The results of the present section show that when a predictor
exists it can indeed be given as a Bayesian predictor, which predicts every (and
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not almost every) measure in the class, while its support is only a countable set.
It is worth noting that for the problem of sequence prediction the case of sta-

tionary ergodic data is relatively well-studied, and several methods of consistent
prediction are available, both for discrete- and real-valued data; limitations of
these methods are also relatively well-understood (besides the works cited above,
see also [5, 79, 63, 64, 1]). This is why in this chapter we mostly concentrate on
the general case of (non-stationary) sources of data.

After the theorems we present some examples of families of measures for
which predictors exist.

2.2.2 Results

Theorem 2.6. Let C be a set of probability measures on (X∞,F). If there is
a measure ρ such that ρ predicts every µ∈C in total variation, then there is a
sequence µk∈C, k∈N such that the measure ν :=

∑
k∈Nwkµk predicts every µ∈C

in total variation, where wk are any positive weights that sum to 1.

This relatively simple fact can be proven in different ways, relying on the
mentioned equivalence (Theorem 2.2) of the statements “ρ predicts µ in total
variation distance” and “µ is absolutely continuous with respect to ρ.” The proof
presented below is not the shortest possible, but it uses ideas and techniques that
are then generalized to the case of prediction in expected average KL-divergence,
which is more involved, since in all interesting cases all measures µ ∈ C are
singular with respect to any predictor that predicts all of them. Another proof
of Theorem 2.6 can be obtained from Theorem 2.9 in the next section. Yet
another way would be to derive it from algebraic properties of the relation of
absolute continuity, given in [70].

Proof. We break the (relatively easy) proof of this theorem into three steps,
which will make the proof of the next theorem more understandable.
Step 1: densities. For any µ∈C, since ρ predicts µ in total variation, by Theo-
rem 2.2, µ has a density (Radon-Nikodym derivative) fµ with respect to ρ. Thus,
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for the (measurable) set Tµ of all sequences x1,x2,...∈X∞ on which fµ(x1,2,...)>0

(the limit limn→∞
ρ(x1..n)
µ(x1..n)

exists and is finite and positive) we have µ(Tµ)=1 and
ρ(Tµ)> 0. Next we will construct a sequence of measures µk ∈ C, k ∈N such
that the union of the sets Tµk has probability 1 with respect to every µ∈C, and
will show that this is a sequence of measures whose existence is asserted in the
theorem statement.

Step 2: a countable cover and the resulting predictor. Let εk := 2−k and let
m1 :=supµ∈Cρ(Tµ). Clearly, m1>0. Find any µ1∈C such that ρ(Tµ1)≥m1−ε1,
and let T1 = Tµ1 . For k > 1 define mk := supµ∈Cρ(Tµ\Tk−1). If mk = 0 then
define Tk :=Tk−1, otherwise find any µk such that ρ(Tµk\Tk−1)≥mk−εk, and let
Tk :=Tk−1∪Tµk . Define the predictor ν as ν :=

∑
k∈Nwkµk.

Step 3: ν predicts every µ ∈ C. Since the sets T1, T2\T1,...,Tk\Tk−1,... are
disjoint, we must have ρ(Tk\Tk−1)→0, so that mk→0 (since mk≤ρ(Tk\Tk−1)+

εk→0). Let
T :=∪k∈NTk.

Fix any µ∈C. Suppose that µ(Tµ\T )>0. Since µ is absolutely continuous with
respect to ρ, we must have ρ(Tµ\T )>0. Then for every k>1 we have

mk=sup
µ′∈C

ρ(Tµ′\Tk−1)≥ρ(Tµ\Tk−1)≥ρ(Tµ\T )>0,

which contradicts mk→0. Thus, we have shown that

µ(T∩Tµ)=1. (2.8)

Let us show that every µ ∈ C is absolutely continuous with respect to ν.
Indeed, fix any µ∈ C and suppose µ(A)> 0 for some A∈F. Then from (2.8)
we have µ(A∩T )> 0, and, by absolute continuity of µ with respect to ρ, also
ρ(A∩T )>0. Since T =∪k∈NTk, we must have ρ(A∩Tk)>0 for some k∈N. Since
on the set Tk the measure µk has non-zero density fµk with respect to ρ, we must
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have µk(A∩Tk)>0. (Indeed, µk(A∩Tk)=
∫
A∩Tk

fµkdρ>0.) Hence,

ν(A∩Tk)≥wkµk(A∩Tk)>0,

so that ν(A)>0. Thus, µ is absolutely continuous with respect to ν, and so, by
Theorem 2.2, ν predicts µ in total variation distance.

Thus, examples of families C for which there is a ρ that predicts every µ∈C
in total variation, are limited to families of measures which have a density with
respect to some measure ρ. On the one hand, from statistical point of view, such
families are rather large: the assumption that the probabilistic law in question
has a density with respect to some (nice) measure is a standard one in statistics.
It should also be mentioned that such families can easily be uncountable. On the
other hand, even such basic examples as the set of all Bernoulli i.i.d. measures
does not allow for a predictor that predicts every measure in total variation.
Indeed, all these processes are singular with respect to one another; in particular,
each of the non-overlapping sets Tp of all sequences which have limiting fraction
p of 0s has probability 1 with respect to one of the measures and 0 with respect
to all others; since there are uncountably many of these measures, there is no
measure ρ with respect to which they all would have a density (since such a
measure should have ρ(Tp)> 0 for all p) . As it was mentioned, predicting in
total variation distance means predicting with arbitrarily growing horizon [46],
while prediction in expected average KL divergence is only concerned with the
probabilities of the next observation, and only on time and data average. For
the latter measure of prediction quality, consistent predictors exist not only
for the class of all Bernoulli processes, but also for the class of all stationary
processes [78]. The next theorem establishes the result similar to Theorem 2.29
for expected average KL divergence.

Theorem 2.7. Let C be a set of probability measures on (X∞,F). If there is a
measure ρ such that ρ predicts every µ∈C in expected average KL divergence,
then there exist a sequence µk∈C, k∈N and a sequence wk>0,k∈N, such that
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∑
k,∈Nwk = 1, and the measure ν :=

∑
k∈Nwkµk predicts every µ∈C in expected

average KL divergence.

A difference worth noting with respect to the formulation of Theorem 2.6
(apart from a different measure of divergence) is in that in the latter the weights
wk can be chosen arbitrarily, while in Theorem 2.7 this is not the case. In general,
the statement “

∑
k∈Nwkνk predicts µ in expected average KL divergence for some

choice of wk, k∈N” does not imply “
∑

k∈Nw
′
kνk predicts µ in expected average

KL divergence for every summable sequence of positive w′k,k ∈ N,” while the
implication trivially holds true if the expected average KL divergence is replaced
by the total variation. This is illustrated in the last example of this section.

The idea of the proof of Theorem 2.7 is as follows. For every µ and every n we
consider the sets T nµ of those x1..n on which µ is greater than ρ. These sets have to
have (from some n on) a high probability with respect to µ. Then since ρ predicts
µ in expected average KL divergence, the ρ-probability of these sets cannot
decrease exponentially fast (that is, it has to be quite large). (The sequences
µ(x1..n)/ρ(x1..n), n∈N will play the role of densities of the proof of Theorem 2.6,
and the sets T nµ the role of sets Tµ on which the density is non-zero.) We then
use, for each given n, the same scheme to cover the set Xn with countably
many T nµ , as was used in the proof of Theorem 2.6 to construct a countable
covering of the set X∞ , obtaining for each n a predictor νn. Then the predictor
ν is obtained as

∑
n∈Nwnνn, where the weights decrease subexponentially. The

latter fact ensures that, although the weights depend on n, they still play no
role asymptotically. The technically most involved part of the proof is to show
that the sets T nµ in asymptotic have sufficiently large weights in those countable
covers that we construct for each n. This is used to demonstrate the implication
“if a set has a high µ probability, then its ρ-probability does not decrease too
fast, provided some regularity conditions.”

The proof is deferred to Section 2.6.1.
Example: countable classes of measures. A very simple but rich example
of a class C that satisfies the conditions of both the theorems above, is any
countable family C={µk :k∈N} of measures. In this case, any mixture predictor

26



ρ :=
∑

k∈Nwkµk predicts all µ∈C both in total variation and in expected average
KL divergence. A particular instance, that has gained much attention in the
literature, is the family of all computable measures. Although countable, this
family of processes is rather rich. The problem of predicting all computable
measures was introduced in [85], where a mixture predictor was proposed.
Example: Bernoulli i.i.d. processes. Consider the class B={µp :p∈ [0,1]} of
all Bernoulli i.i.d. processes: µp(xk =0)=p independently for all k∈N. Clearly,
this family is uncountable. Moreover, each set

Tp :={x∈X∞ : the limiting fraction of 0s in x equals p},

has probability 1 with respect to µp and probability 0 with respect to any µp′ :
p′ 6=p. Since the sets Tp, p∈ [0,1] are non-overlapping, there is no measure ρ for
which ρ(Tp)> 0 for all p∈ [0,1]. That is, there is no measure ρ with respect to
which all µp are absolutely continuous. Therefore, by Theorem 2.2, a predictor
that predicts any µ ∈B in total variation does not exist, demonstrating that
this notion of prediction is rather strong. However, we know (e.g., [54]) that
the Laplace predictor (2.7) predicts every Bernoulli i.i.d. process in expected
average KL divergence (and not only). Hence, Theorem 2.29 implies that there
is a countable mixture predictor for this family too. Let us find such a predictor.
Let µq :q∈Q be the family of all Bernoulli i.i.d. measures with rational probability
of 0, and let ρ :=

∑
q∈Qwqµq, where wq are arbitrary positive weights that sum

to 1. Let µp be any Bernoulli i.i.d. process. Let h(p,q) denote the divergence
plog(p/q)+(1−p)log(1−p/1−q). For each ε we can find a q ∈ Q such that
h(p,q)<ε. Then

1

n
dn(µp,ρ)=

1

n
Eµp log

logµp(x1..n)

logρ(x1..n)
≤ 1

n
Eµp log

logµp(x1..n)

wqlogµq(x1..n)

=− logwq
n

+h(p,q)≤ε+o(1). (2.9)

Since this holds for each ε, we conclude that 1
n
dn(µp,ρ)→0 and ρ predicts every
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µ∈B in expected average KL divergence.
Example: stationary processes. In [78] a predictor ρR was constructed which
predicts every stationary process ρ∈S in expected average KL divergence. (This
predictor is obtained as a mixture of predictors for k-order Markov sources, for
all k∈N.) Therefore, Theorem 2.7 implies that there is also a countable mixture
predictor for this family of processes. Such a predictor can be constructed as
follows (the proof in this example is based on the proof in [80], Appendix 1).
Observe that the familyMk of k-order stationary binary-valued Markov processes
is parametrized by 2k [0,1]-valued parameters: probability of observing 0 after
observing x1..k, for each x1..k∈Xk. For each k∈N let µkq , q∈Q2k be the (countable)
family of all stationary k-order Markov processes with rational values of all the
parameters. We will show that any predictor ν :=

∑
k∈N
∑

q∈Q2kwkwqµ
k
q , where

wk, k∈N and wq,q∈Q2k , k∈N are any sequences of positive real weights that
sum to 1, predicts every stationary µ ∈ S in expected average KL divergence.
For µ ∈ S and k ∈N define the k-order conditional Shannon entropy hk(µ) :=

Eµlogµ(xk+1|x1..k). We have hk+1(µ)≥hk(µ) for every k∈N and µ∈S, and the
limit

h∞(µ) := lim
k→∞

hk(µ) (2.10)

is called the limit Shannon entropy; see, for example, [32]. Fix some µ∈S. It is
easy to see that for every ε>0 and every k∈N we can find a k-order stationary
Markov measure µkqε , qε∈Q

2k with rational values of the parameters, such that

Eµlog
µ(xk+1|x1..k)

µkqε(xk+1|x1..k)
<ε. (2.11)
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We have

1

n
dn(µ,ν)≤− logwkwqε

n
+

1

n
dn(µ,µkqε)

=O(k/n)+
1

n
Eµlogµ(x1..n)− 1

n
Eµlogµkqε(x1..n)

=o(1)+h∞(µ)− 1

n
Eµ

n∑
k=1

logµkqε(xt|x1..t−1)

=o(1)+h∞(µ)− 1

n
Eµ

k∑
t=1

logµkqε(xt|x1..t−1)−n−k
n

Eµlogµkqε(xk+1|x1..k)

≤o(1)+h∞(µ)−n−k
n

(hk(µ)−ε), (2.12)

where the first inequality is derived analogously to (2.9), the first equality follows
from (2.2), the second equality follows from the Shannon-McMillan-Breiman
theorem (e.g., [32]), that states that 1

n
logµ(x1..n)→h∞(µ) in expectation (and

a.s.) for every µ∈S, and (2.2); in the third equality we have used the fact that
µkqε is k-order Markov and µ is stationary, whereas the last inequality follows
from (2.11). Finally, since the choice of k and ε was arbitrary, from (2.12)
and (2.10) we obtain limn→∞

1
n
dn(µ,ν)=0.

Example: weights may matter. Finally, we provide an example that il-
lustrates the difference between the formulations of Theorems 2.6 and 2.7: in
the latter the weights are not arbitrary. We will construct a sequence of mea-
sures νk,k ∈N, a measure µ, and two sequences of positive weights wk and w′k
with

∑
k∈Nwk =

∑
k∈Nw

′
k = 1, for which ν :=

∑
k∈Nwkνk predicts µ in expected

average KL divergence, but ν ′ :=
∑

k∈Nw
′
kνk does not. Let νk be a determin-

istic measure that first outputs k 0s and then only 1s, k ∈N. Let wk =w/k2

with w = 6/π2 and w′k = 2−k. Finally, let µ be a deterministic measure that
outputs only 0s. We have dn(µ,ν) =−log(

∑
k≥nwk)≤−log(wn−2) = o(n), but

dn(µ,ν ′)=−log(
∑

k≥nw
′
k)=−log(2−n+1)=n−1 6=o(n), proving the claim.
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2.3 Characterizing predictable classes [R3]

In this section we exhibit some sufficient conditions on the class C, under which a
predictor for all measures in C exists. It is important to note that none of these
conditions relies on a parametrization of any kind. The conditions presented
are of two types: conditions on asymptotic behaviour of measures in C, and on
their local (restricted to first n observations) behaviour. Conditions of the first
type concern separability of C with respect to the total variation distance and
the expected average KL divergence. We show that in the case of total variation
separability is a necessary and sufficient condition for the existence of a predictor,
whereas in the case of expected average KL divergence it is sufficient but is not
necessary.

The conditions of the second kind concern the “capacity” of the sets Cn :=

{µn :µ∈C}, n∈N, where µn is the measure µ restricted to the first n observa-
tions. Intuitively, if Cn is small (in some sense), then prediction is possible. We
measure the capacity of Cn in two ways. The first way is to find the maximum
probability given to each sequence x1,...,xn by some measure in the class, and
then take a sum over x1,...,xn. Denoting the obtained quantity cn, one can show
that it grows polynomially in n for some important classes of processes, such as
i.i.d. or Markov processes. We show that, in general, if cn grows subexponen-
tially then a predictor exists that predicts any measure in C in expected average
KL divergence. On the other hand, exponentially growing cn are not sufficient
for prediction. A more refined way to measure the capacity of Cn is using a
concept of channel capacity from information theory, which was developed for a
closely related problem of finding optimal codes for a class of sources. We extend
corresponding results from information theory to show that sublinear growth of
channel capacity is sufficient for the existence of a predictor, in the sense of
expected average divergence. Moreover, the obtained bounds on the divergence
are optimal up to an additive logarithmic term.
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2.3.1 Separability

Knowing that a mixture of a countable subset gives a predictor if there is one,
a notion that naturally comes to mind, when trying to characterize families of
processes for which a predictor exists, is separability. Can we say that there is
a predictor for a class C of measures if and only if C is separable? Of course, to
talk about separability we need a suitable topology on the space of all measures,
or at least on C. If the formulated questions were to have a positive answer,
we would need a different topology for each of the notions of predictive quality
that we consider. Sometimes these measures of predictive quality indeed define
a nice enough structure of a probability space, but sometimes they do not. The
question whether there exists a topology on C, separability with respect to which
is equivalent to the existence of a predictor, is already more vague and less ap-
pealing. Nonetheless, in the case of total variation distance we obviously have
a candidate topology: that of total variation distance, and indeed separability
with respect to this topology is equivalent to the existence of a predictor, as the
next theorem shows. This theorem also implies Theorem 2.6, thereby providing
an alternative proof for the latter. In the case of expected average KL diver-
gence the situation is different. While one can introduce a topology based on it,
separability with respect to this topology turns out to be a sufficient but not a
necessary condition for the existence of a predictor, as is shown in Theorem 2.11.

Definition 2.8 (unconditional total variation distance). Introduce the (uncon-
ditional) total variation distance

v(µ,ρ) :=sup
A∈F
|µ(A)−ρ(A)|.

Theorem 2.9. Let C be a set of probability measures on (X∞,F). There is a
measure ρ such that ρ predicts every µ∈C in total variation if and only if C is
separable with respect to the topology of total variation distance. In this case, any
measure ν of the form ν=

∑∞
k=1wkµk, where {µk :k∈N} is any dense countable

subset of C and wk are any positive weights that sum to 1, predicts every µ∈C
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in total variation.

Proof. Sufficiency and the mixture predictor. Let C be separable in total varia-
tion distance, and let D={νk :k∈N} be its dense countable subset. We have to
show that ν :=

∑
k∈Nwkνk, where wk are any positive real weights that sum to

1, predicts every µ∈C in total variation. To do this, it is enough to show that
µ(A)>0 implies ν(A)>0 for every A∈F and every µ∈C. Indeed, let A be such
that µ(A)=ε>0. Since D is dense in C, there is a k∈N such that v(µ,νk)<ε/2.
Hence νk(A)≥µ(A)−v(µ,νk)≥ε/2 and ν(A)≥wkνk(A)≥wkε/2>0.

Necessity. For any µ∈C, since ρ predicts µ in total variation, µ has a density
(Radon-Nikodym derivative) fµ with respect to ρ. We can define L1 distance
with respect to ρ as Lρ1(µ,ν)=

∫
X∞
|fµ−fν |dρ. The set of all measures that have a

density with respect to ρ, is separable with respect to this distance (for example,
a dense countable subset can be constructed based on measures whose densities
are step-functions, that take only rational values, see, e.g., [53]); therefore, its
subset C is also separable. Let D be any dense countable subset of C. Thus,
for every µ∈C and every ε there is a µ′ ∈D such that Lρ1(µ,µ′)<ε. For every
measurable set A we have

|µ(A)−µ′(A)|=
∣∣∣∣∫
A

fµdρ−
∫
A

fµ′dρ

∣∣∣∣≤∫
A

|fµ−fµ′|dρ≤
∫
X∞
|fµ−fµ′ |dρ<ε.

Therefore, v(µ,µ′)=supA∈F|µ(A)−µ′(A)|<ε, and the set C is separable in total
variation distance.

Definition 2.10 (asymptotic KL “distance” D). Define asymptotic expected av-
erage KL divergence between measures µ and ρ as

D(µ,ρ)=lim sup
n→∞

1

n
dn(µ,ρ). (2.13)

Theorem 2.11. For any set C of probability measures on (X∞,F), separability
with respect to the asymptotic expected average KL divergence D is a sufficient
but not a necessary condition for the existence of a predictor:
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(i) If there exists a countable set D :={νk :k∈N}⊂C, such that for every µ∈C
and every ε>0 there is a measure µ′∈D, such that D(µ,µ′)<ε, then every
measure ν of the form ν =

∑∞
k=1wkµk, where wk are any positive weights

that sum to 1, predicts every µ∈C in expected average KL divergence.

(ii) There is an uncountable set C of measures, and a measure ν, such that ν
predicts every µ∈C in expected average KL divergence, but µ1 6=µ2 implies
D(µ1,µ2) =∞ for every µ1,µ2 ∈ C; in particular, C is not separable with
respect to D.

Proof. (i) Fix µ∈C. For every ε>0 pick k∈N such that D(µ,νk)<ε. We have

dn(µ,ν)=Eµlog
µ(x1..n)

ν(x1..n)
≤Eµlog

µ(x1..n)

wkνk(x1..n)
=−logwk+dn(µ,νk)≤nε+o(n).

Since this holds for every ε, we conclude 1
n
dn(µ,ν)→0.

(ii) Let C be the set of all deterministic sequences (measures concentrated
on just one sequence) such that the number of 0s in the first n symbols is less
than

√
n. Clearly, this set is uncountable. It is easy to check that µ1 6=µ2 implies

D(µ1,µ2) =∞ for every µ1,µ2 ∈ C, but the predictor ν, given by ν(xn = 0) :=

1/n independently for different n, predicts every µ∈C in expected average KL
divergence.

Examples. Basically, the examples of the preceding section carry over here.
Indeed, the example of countable families is trivially also an example of sepa-
rable (with respect to either of the considered topologies) family. For Bernoulli
i.i.d. and k-order Markov processes, the (countable) sets of processes that have
rational values of the parameters, considered in the previous section, are dense
both in the topology of the parametrization and with respect to the asymptotic
average divergence D. It is also easy to check from the arguments presented in
the corresponding example of Section 2.5.1, that the family of all k-order sta-
tionary Markov processes with rational values of the parameters, where we take
all k∈N, is dense with respect to D in the set S of all stationary processes, so
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that S is separable with respect to D. Thus, the sufficient but not necessary
condition of separability is satisfied in this case. On the other hand, neither of
these latter families is separable with respect to the topology of total variation
distance.

2.3.2 Conditions based on local behaviour of measures

Next we provide some sufficient conditions for the existence of a predictor based
on local characteristics of the class of measures, that is, measures truncated to
the first n observations. First of all, it must be noted that necessary and sufficient
conditions cannot be obtained this way. The basic example is that of a family D

of all deterministic sequences that are 0 from some time on. This is a countable
class of measures which is very easy to predict. Yet, the class of measures on Xn,
obtained by truncating all measures in D to the first n observations, coincides
with what would be obtained by truncating all deterministic measures to the
first n observations, the latter class being obviously not predictable at all (see
also examples below). Nevertheless, considering this kind of local behaviour
of measures, one can obtain not only sufficient conditions for the existence of a
predictor, but also rates of convergence of the prediction error. It also gives some
ideas of how to construct predictors, for the cases when the sufficient conditions
obtained are met.

For a class C of stochastic processes and a sequence x1..n∈Xn introduce the
coefficients

cx1..n(C) :=sup
µ∈C

µ(x1..n). (2.14)

Define also the normalizer

cn(C) :=
∑

x1..n∈Xn

cx1..n(C). (2.15)

Definition 2.12 (NML estimate). The normalized maximum likelihood estima-
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tor λ is defined (e.g., [54]) as

λC(x1..n) :=
1

cn(C)
cx1..n(C), (2.16)

for each x1..n∈Xn.

The family λC(x1..n) (indexed by n) in general does not immediately define
a stochastic process over X∞ (λC are not consistent for different n); thus, in
particular, using average KL divergence for measuring prediction quality would
not make sense, since

dn(µ(·|x1..n−1),λC(·|x1..n−1))

can be negative, as the following example shows.
Example: negative dn for NML estimates. Let the processes µi, i∈{1,...,4}
be defined on the steps n= 1,2 as follows. µ1(00) = µ2(01) = µ4(11) = 1, while
µ3(01) = µ3(00) = 1/2. We have λC(1) = λC(0) = 1/2, while λC(00) = λC(01) =

λC(11)=1/3. If we define λC(x|y)=λC(yx)/λC(y), we obtain λC(1|0)=λC(0|0)=

2/3. Then d2(µ3(·|0),λC(·|0))=log3/4<0.
Yet, by taking an appropriate mixture, it is still possible to construct a

predictor (a stochastic process) based on λ, that predicts all the measures in the
class.

Definition 2.13 (predictor ρc). Let w :=6/π2 and let wk := w
k2
. Define a measure

µk as follows. On the first k steps it is defined as λC, and for n>k it outputs
only zeros with probability 1; so, µk(x1..k)=λC(x1..k) and µk(xn=0)=1 for n>k.
Define the measure ρc as

ρc=
∞∑
k=1

wkµk. (2.17)

Thus, we have taken the normalized maximum likelihood estimates λn for
each n and continued them arbitrarily (actually, by a deterministic sequence) to
obtain a sequence of measures on (X∞,F) that can be summed.
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Theorem 2.14. For any set C of probability measures on (X∞,F), the predictor
ρc defined above satisfies

1

n
dn(µ,ρc)≤

logcn(C)

n
+O

(
logn

n

)
; (2.18)

in particular, if
logcn(C)=o(n), (2.19)

then ρc predicts every µ∈C in expected average KL divergence.

Proof. Indeed,

1

n
dn(µ,ρc)=

1

n
Elog

µ(x1..n)

ρc(x1..n)
≤ 1

n
Elog

µ(x1..n)

wnµn(x1..n)

≤ 1

n
log

cn(C)

wn
=

1

n
(logcn(C)+2logn+logw). (2.20)

Example: i.i.d., finite-memory. To illustrate the applicability of the theorem
we first consider the class of i.i.d. processes B over the binary alphabetX={0,1}.
It is easy to see that, for each x1,...,xn,

sup
µ∈B

µ(x1..n)=(k/n)k(1−k/n)n−k,

where k= #{i≤ n : xi = 0} is the number of 0s in x1,...,xn. For the constants
cn(C) we can derive

cn(C)=
∑

x1..n∈Xn

sup
µ∈B

µ(x1..n)=
∑

x1..n∈Xn

(k/n)k(1−k/n)n−k

=
n∑
k=0

(
n

k

)
(k/n)k(1−k/n)n−k≤

n∑
k=0

n∑
t=0

(
n

k

)
(k/n)t(1−k/n)n−t=n+1,

so that cn(C)≤n+1.
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In general, for the class Mk of processes with memory k over a finite
space X we can get polynomial coefficients cn(Mk) (see, for example, [54] and
also Section 2.4). Thus, with respect to finite-memory processes, the conditions
of Theorem 2.14 leave ample space for the growth of cn(C), since (2.19) allows
subexponential growth of cn(C). Moreover, these conditions are tight, as the
following example shows.
Example: exponential coefficients are not sufficient. Observe that the
condition (2.19) cannot be relaxed further, in the sense that exponential coeffi-
cients cn are not sufficient for prediction. Indeed, for the class of all deterministic
processes (that is, each process from the class produces some fixed sequence of
observations with probability 1) we have cn=2n, while obviously for this class a
predictor does not exist.
Example: stationary processes. For the set of all stationary processes we
can obtain cn(C)≥2n/n (as is easy to see by considering periodic n-order Markov
processes, for each n∈N), so that the conditions of Theorem 2.14 are not satisfied.
This cannot be fixed, since uniform rates of convergence cannot be obtained for
this family of processes, as was shown in [78].

Optimal rates of convergence. A natural question that arises with respect
to the bound (2.18) is whether it can be matched by a lower bound. This ques-
tion is closely related to the optimality of the normalized maximum likelihood
estimates used in the construction of the predictor. In general, since NML esti-
mates are not optimal, neither are the rates of convergence in (2.18). To obtain
(close to) optimal rates one has to consider a different measure of capacity.

To do so, we make the following connection to a problem in information
theory. Let P(X∞) be the set of all stochastic processes (probability measures)
on the space (X∞,F), and let P(X) be the set of probability distributions over
a (finite) set X. For a class C of measures we are interested in a predictor that
has a small (or minimal) worst-case (with respect to the class C) probability of
error. Thus, we are interested in the quantity

inf
ρ∈P(X∞)

sup
µ∈C

D(µ,ρ), (2.21)
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where the infimum is taken over all stochastic processes ρ, and D is the asymp-
totic expected average KL divergence (2.13). (In particular, we are interested in
the conditions under which the quantity (2.21) equals zero.) This problem has
been studied for the case when the probability measures are over a finite set X,
and D is replaced simply by the KL divergence d between the measures. Thus,
the problem was to find the probability measure ρ (if it exists) on which the
following minimax is attained

R(A) := inf
ρ∈P(X)

sup
µ∈A

d(µ,ρ), (2.22)

where A⊂P(X). This problem is closely related to the problem of finding the
best code for the class of sources A, which was its original motivation. The
normalized maximum likelihood distribution considered above does not in gen-
eral lead to the optimum solution for this problem. The optimum solution is
obtained through the result that relates the minimax (2.22) to the so-called
channel capacity.

Definition 2.15 (Channel capacity). For a set A of measures on a finite set X
the channel capacity of A is defined as

C(A) := sup
P∈P0(A)

∑
µ∈S(P )

P (µ)d(µ,ρP ), (2.23)

where P0(A) is the set of all probability distributions on A that have a finite
support, S(P ) is the (finite) support of a distribution P ∈ P0(A), and ρP =∑

µ∈S(P )P (µ)µ.

It is shown in [75, 33] that C(A)=R(A), thus reducing the problem of finding
a minimax to an optimization problem. For probability measures over infinite
spaces this result (R(A)=C(A)) was generalized by [39], but the divergence be-
tween probability distributions is measured by KL divergence (and not asymp-
totic average KL divergence), which gives infinite R(A) e.g. already for the class
of i.i.d. processes.
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However, truncating measures in a class C to the first n observations, we can
use the results about channel capacity to analyse the predictive properties of the
class. Moreover, the rates of convergence that can be obtained along these lines
are close to optimal. In order to pass from measures minimizing the divergence
for each individual n to a process that minimizes the divergence for all n we use
the same idea as when constructing the process ρc.

Theorem 2.16. Let C be a set of measures on (X∞,F), and let Cn be the class
of measures from C restricted to Xn. There exists a measure ρC such that

1

n
dn(µ,ρC)≤ C(Cn)

n
+O

(
logn

n

)
; (2.24)

in particular, if C(Cn)/n→ 0, then ρC predicts every µ∈C in expected average
KL divergence. Moreover, for any measure ρC and every ε>0 there exists µ∈C
such that

1

n
dn(µ,ρC)≥ C(Cn)

n
−ε.

Proof. As shown in [33], for each n there exists a sequence νnk , k∈N of measures
on Xn such that

lim
k→∞

sup
µ∈Cn

dn(µ,νnk )→C(Cn).

For each n∈N find an index kn such that

| sup
µ∈Cn

dn(µ,νnkn)−C(Cn)|≤1.

Define the measure ρn as follows. On the first n symbols it coincides with νnkn and
ρn(xm = 0) = 1 for m>n. Finally, set ρC =

∑∞
n=1wnρn, where wk = w

n2 ,w= 6/π2.
We have to show that limn→∞

1
n
dn(µ,ρC) = 0 for every µ∈C. Indeed, similarly

39



to (2.20), we have

1

n
dn(µ,ρC)=

1

n
Eµlog

µ(x1..n)

ρC(x1..n)

≤ logw−1
k

n
+

1

n
Eµlog

µ(x1..n)

ρn(x1..n)
≤ logw+2logn

n
+

1

n
dn(µ,ρn)

≤o(1)+
C(Cn)

n
. (2.25)

The second statement follows from the fact [75, 33] that C(Cn) = R(Cn)

(cf. (2.22)).

Thus, if the channel capacity C(Cn) grows sublinearly, a predictor can be
constructed for the class of processes C. In this case the problem of constructing
the predictor is reduced to finding the channel capacities for different n and
finding the corresponding measures on which they are attained or approached.
Examples. For the class of all Bernoulli i.i.d. processes, the channel capacity
C(Bn) is known to be O(logn) [54]. For the family of all stationary processes it
is O(n), so that the conditions of Theorem 2.16 are satisfied for the former but
not for the latter.

We also remark that the requirement of a sublinear channel capacity cannot
be relaxed, in the sense that a linear channel capacity is not sufficient for pre-
diction, since it is the maximal possible capacity for a set of measures on Xn,
achieved, for example, on the set of all measures, or on the set of all deterministic
sequences.

2.4 Conditions under which one measure is a pre-

dictor for another [R8]

In this section we address the following question: what are the conditions under
which a measure ρ is a good predictor for a measure µ? As it was mentioned, for
prediction in total variation distance, this relationship is described by the relation
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of absolute continuity (see Theorem 2.2). Here we will attempt to establish
similar conditions for other measures of predictive quality, including, but not
limited to, expected average KL divergence.

We start with the following observation. For a Bayesian mixture ξ of a
countable class of measures νi, i∈N, we have ξ(A)≥wiνi(A) for any i and any
measurable set A, where wi is a constant. This condition is stronger than the
assumption of absolute continuity and is sufficient for prediction in a very strong
sense. Since we are willing to be satisfied with prediction in a weaker sense (e.g.
convergence of conditional probabilities), let us make a weaker assumption: Say
that a measure ρ dominates a measure µ with coefficients cn>0 if

ρ(x1,...,xn) ≥ cnµ(x1,...,xn) (2.26)

for all x1,...,xn.
The first question we consider in this section is, under what conditions on

cn does (2.26) imply that ρ predicts µ? Observe that if ρ(x1,...,xn)> 0 for any
x1,...,xn then any measure µ is locally absolutely continuous with respect to ρ
(that is, the measure µ restricted to the first n trials µ|Xn is absolutely contin-
uous w.r.t. ρ|Xn for each n), and moreover, for any measure µ some constants
cn can be found that satisfy (2.26). For example, if ρ is Bernoulli i.i.d. measure
with parameter 1

2
and µ is any other measure, then (2.26) is (trivially) satis-

fied with cn = 2−n. Thus we know that if cn ≡ c then ρ predicts µ in a very
strong sense, whereas exponentially decreasing cn are not enough for prediction.
Perhaps somewhat surprisingly, we will show that dominance with any subex-
ponentially decreasing coefficients is sufficient for prediction in expected average
KL divergence. Dominance with any polynomially decreasing coefficients, and
also with coefficients decreasing (for example) as cn = exp(−

√
n/logn), is suffi-

cient for (almost sure) prediction on average (i.e. in Cesaro sense). However, for
prediction on every step we have a negative result: for any dominance coefficients
that go to zero there exists a pair of measures ρ and µ which satisfy (2.26) but ρ
does not predict µ in the sense of almost sure convergence of probabilities. Thus
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the situation is similar to that for predicting any stationary measure: prediction
is possible in the average but not on every step.

Note also that for Laplace’s measure ρL it can be shown that ρL dominates
any i.i.d. measure µ with linearly decreasing coefficients cn = 1

n+1
; a generaliza-

tion of ρL for predicting all measures with memory k (for a given k) dominates
them with polynomially decreasing coefficients. Thus dominance with decreas-
ing coefficients generalizes (in a sense) predicting countable classes of measures
(where we have dominance with a constant), absolute continuity (via local ab-
solute continuity), and predicting i.i.d. and finite-memory measures.

Another way to look for generalizations is as follows. The Bayes mixture ξ,
being a sum of countably many measures (predictors), possesses some of their
predicting properties. In general, which predictive properties are preserved under
summation? In particular, if we have two predictors ρ1 and ρ2 for two classes
of measures, we are interested in the question whether 1

2
(ρ1+ρ2) is a predictor

for the union of the two classes. An answer to this question would improve our
understanding of how far a class of measures for which a predicting measure
exists can be extended without losing this property.

Thus, the second question we consider in this section is the following: suppose
that a measure ρ predicts µ (in some weak sense), and let χ be some other
probability measure (e.g. a predictor for a different class of measures). Does the
measure ρ′= 1

2
(ρ+χ) still predict µ? That is, we ask to which prediction quality

criteria does the idea of taking a Bayesian sum generalize. Absolute continuity
is preserved under summation along with its (strong) prediction ability. It was
mentioned in [80] that prediction in the (weak) sense of convergence of expected
averages of conditional probabilities is preserved under summation. Here we find
that several stronger notions of prediction are not preserved under summation.

Thus we address the following two questions. Is dominance with decreasing
coefficients sufficient for prediction in some sense, under some conditions on the
coefficients (Section 2.4.2)? And, if a measure ρ predicts a measure µ in some
sense, does the measure 1

2
(ρ+χ) also predict µ in the same sense, where χ is an

arbitrary measure (Section 2.4.3)? Considering different criteria of prediction
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(a.s. convergence of conditional probabilities, a.s. convergence of averages, etc.)
in the above two questions we obtain not two but many different questions, for
some of which we find positive answers and for some negative, yet some are left
open.

The rest of this section is organized as follows. Section 2.4.1 introduces
the measures of divergence of probability measures that we will consider. Sec-
tion 2.4.2 addresses the question of whether dominance with decreasing coeffi-
cients is sufficient for prediction, while in Section 2.4.3 we consider the problem
of summing a predictor with an arbitrary measure.

2.4.1 Measuring performance of prediction

In addition to the measures of performance of prediction used in the previous
sections (expected average KL divergence and total variation), here we introduce
several more.

For two measures µ and ρ define the following measures of divergence.

(δ) Kullback-Leibler (KL) divergence

δn(µ,ρ|x<n)=
∑
x∈X

µ(xn=x|x<n)log
µ(xn=x|x<n)

ρ(xn=x|x<n)
,

(d̄) average KL divergence d̄n(µ,ρ|x1..n)=
1

n
dn(µ,ρ)=

1

n

n∑
t=1

δt(µ,ρ|x<t),

(a) absolute distance an(µ,ρ|x<n)=
∑
x∈X

|µ(xn=x|x<n)−ρ(xn=x|x<n)|,

(ā) average absolute distance ān(µ,ρ|x1..n)=
1

n

n∑
t=1

at(µ,ρ|x<t).

Definition 2.17. We say that ρ predicts µ

(d) in (non-averaged) KL divergence if δn(µ,ρ|x<n)→0 µ-a.s. as t→∞,

(d̄) in (time-average) average KL divergence if d̄n(µ,ρ|x1..n)→0 µ-a.s.,
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(Ed̄) in expected average KL divergence if Eµd̄n(µ,ρ|x1..n)→0,

(a) in absolute distance if an(µ,ρ|x<n)→0 µ-a.s.,

(ā) in average absolute distance if ān(µ,ρ|x1..n)→0 µ-a.s.,

(Eā) in expected average absolute distance if Eµān(µ,ρ|x1..n)→0.

The argument x1..n will be often left implicit in our notation. Recall (defini-
tion 2.1) measure ρ converges to a measure µ in total variation (tv) if supA⊂σ(

⋃∞
t=nX

t)|µ(A|x<n)−
ρ(A|x<n)|→0 µ-almost surely. The following implications hold (and are complete
and strict):

δ ⇒ d̄ Ed̄
⇓ ⇓ ⇓

tv ⇒ a ⇒ ā ⇒ Eā
(2.27)

to be understood as e.g.: if d̄n→0 a.s. then ān→0 a.s, or, if Ed̄n→0 then Eān→0.
The horizontal implications ⇒ follow immediately from the definitions, and the
⇓ follow from the following Lemma:

Lemma 2.18. For all measures ρ and µ and sequences x1..∞ we have: a2
t ≤2δt

and ā2
n≤2d̄n and (Eān)2≤2Ed̄n.

Proof. Pinsker’s inequality [41, Lem.3.11a] implies a2
t ≤ 2δt. Using this and

Jensen’s inequality for the average 1
n

∑n
t=1[...] we get

2d̄n =
1

n

n∑
t=1

2δt ≥
1

n

n∑
t=1

a2
t ≥

(
1

n

n∑
t=1

at

)2

= ā2
n (2.28)

Using this and Jensen’s inequality for the expectation E we get 2Ed̄n≥Eā2
n≥

(Eān)2.

2.4.2 Dominance with decreasing coefficients

First we consider the question whether property (2.26) is sufficient for prediction.

44



Definition 2.19. We say that a measure ρ dominates a measure µ with coeffi-
cients cn>0 iff

ρ(x1..n) ≥ cnµ(x1..n). (2.29)

for all x1..n.

Suppose that ρ dominates µ with decreasing coefficients cn. Does ρ predict
µ in (expected, expected average) KL divergence (absolute distance)? First let
us give an example.

Proposition 2.20. Let ρL be the Laplace measure, given by ρL(xn+1 =a|x1..n)=
k+1
n+|X| for any a∈X and any x1..n∈Xn, where k is the number of occurrences of
a in x1..n (this is also well defined for n=0). Then

ρL(x1..n) ≥ n!

(n+|X|−1)!
µ(x1..n) (2.30)

for any measure µ which generates independently and identically distributed sym-
bols. The equality is attained for some choices of µ.

Proof. We will only give the proof for X={0,1}, the general case is analogous.
To calculate ρL(x1..n) observe that it only depends on the number of 0s and 1s
in x1..n and not on their order. Thus we compute ρL(x1..n) = k!(n−k)!

(n+1)!
where k is

the number of 1s. For any measure µ such that µ(xn = 1) =p for some p∈ [0,1]

independently for all n, and for Laplace measure ρL we have

µ(x1..n)

ρL(x1..n)
=

(n+ 1)!

k!(n− k)!
pk(1− p)n−k = (n+ 1)

(
n

k

)
pk(1− p)n−k

≤ (n+ 1)
n∑
k=0

(
n

k

)
pk(1− p)n−k = n+ 1,

for any n-letter word x1,...,xn where k is the number of 1s in it. The equality
in the bound is attained when p= 1, so that k=n, µ(x1..n) = 1, and ρL(x1..n) =

1
n+1

.

Thus for Laplace’s measure ρL and binaryX we have cn=O( 1
n
). As mentioned
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in the introduction, in general, exponentially decreasing coefficients cn are not
sufficient for prediction, since (2.26) is satisfied with ρ being a Bernoulli i.i.d.
measure and µ any other measure. On the other hand, the following proposition
shows that in a weak sense of convergence in expected average KL divergence
(or absolute distance) the property (2.26) with subexponentially decreasing cn
is sufficient. We also remind that if cn are bounded from below then prediction
in the strong sense of total variation is possible.

Theorem 2.21. Let µ and ρ be two measures on X∞ and suppose that ρ(x1..n)≥
cnµ(x1..n) for any x1..n, where cn are positive constants satisfying 1

n
logc−1

n →
0. Then ρ predicts µ in expected average KL divergence Eµd̄n(µ,ρ)→ 0 and in
expected average absolute distance Eµān(µ,ρ)→0.

Proof. For convergence in average expected KL divergence, using (2.2) we derive

Eµd̄n(µ,ρ)=
1

n
Elog

µ(x1..n)

ρ(x1..n)
≤ 1

n
logc−1

n →0.

The statement for expected average distance follows from this and
Lemma 2.18.

With a stronger condition on cn prediction in average KL divergence can be
established.

Theorem 2.22. Let µ and ρ be two measures on X∞ and suppose that ρ(x1..n)≥
cnµ(x1..n) for every x1..n, where cn are positive constants satisfying

∞∑
n=1

(log c−1
n )2

n2
< ∞. (2.31)

Then ρ predicts µ in average KL divergence d̄n(µ,ρ)→ 0 µ-a.s. and in average
absolute distance ān(µ,ρ)→0 µ-a.s.

In particular, the condition (2.31) on the coefficients is satisfied for polyno-
mially decreasing coefficients, or for cn=exp(−

√
n/logn).
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The proof is deferred to Section 2.6.2.
However, no form of dominance with decreasing coefficients is sufficient for

prediction in absolute distance or KL divergence, as the following negative result
states.

Proposition 2.23. For each sequence of positive numbers cn that goes to 0 there
exist measures µ and ρ and a number ε>0 such that ρ(x1..n)≥cnµ(x1..n) for all
x1..n, yet an(µ,ρ|x1..n)>ε and δn(µ,ρ|x1..n)>ε infinitely often µ-a.s.

Proof. Let µ be concentrated on the sequence 11111... (that is µ(xn=1)=1 for
all n), and let ρ(xn = 1) = 1 for all n except for a subsequence of steps n=nk,
k∈ IN on which ρ(xnk = 1) = 1/2 independently of each other. It is easy to see
that choosing nk sparse enough we can make ρ(11...1n) decrease to 0 arbitrary
slowly; yet |µ(xnk)−ρ(xnk)|=1/2 for all k.

Thus for the first question — whether dominance with some coefficients de-
creasing to zero is sufficient for prediction, we have the following table of ques-
tions and answers, where, in fact, positive answers for an are implied by positive
answers for δn and vice versa for the negative answers:

Ed̄n d̄n δn Eān ān an

+ + − + + −

However, if we take into account the conditions on the coefficients, we see some
open problems left, and different answers for d̄n and ān may be obtained. Follow-
ing is the table of conditions on dominance coefficients and answers to the ques-
tions whether these conditions are sufficient for prediction (coefficients bounded
from below are included for the sake of completeness).

Ed̄n d̄n δn Eān ān an

logc−1
n =o(n) + ? − + ? −∑∞

n=1
logc−1

n

n2 <∞ + + − + + −
cn≥c>0 + + + + + +
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We know from Proposition 2.23 that the condition cn≥c>0 for convergence in δn
can not be improved; thus the open problem left is to find whether log c−1

n =o(n)

is sufficient for prediction in d̄n or at least in ān.
Another open problem is to find out whether any conditions on dominance

coefficients are necessary for prediction; so far we only have some sufficient con-
ditions. On the one hand, the obtained results suggest that some form of dom-
inance with decreasing coefficients may be necessary for prediction, at least in
the sense of convergence of averages. On the other hand, the condition (2.26)
is uniform over all sequences which probably is not necessary for prediction. As
for prediction in the sense of almost sure convergence, perhaps more subtle be-
havior of the ratio µ(x1..n)

ρ(x1..n)
should be analyzed, since dominance with decreasing

coefficients is not sufficient for prediction in this sense.

2.4.3 Preservation of the predictive ability under summa-

tion with an arbitrary measure

Now we turn to the question whether, given a measure ρ that predicts a measure
µ in some sense, the “contaminated” measure (1−ε)ρ+εχ for some 0<ε<1 also
predicts µ in the same sense, where χ is an arbitrary probability measure. Since
most considerations are independent of the choice of ε, in particular the results
in this section, we set ε= 1

2
for simplicity. We define

Definition 2.24. By “ρ contaminated with χ” we mean ρ′ := 1
2
(ρ+χ), where ρ

and χ are probability measures.

Positive results can be obtained for convergence in expected average KL
divergence. The statement of the next proposition in a different form was men-
tioned in [80, 42]. Since the proof is simple we present it here for the sake of
completeness; it is based on the same ideas as the proof of Theorem 2.21.

Proposition 2.25. Let µ and ρ be two measures on X∞ and suppose that ρ
predicts µ in expected average KL divergence. Then so does the measure ρ′ =
1
2
(ρ+χ) where χ is any other measure on X∞.
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Proof.

0 ≤ Ed̄n(µ, ρ′) =
1

n
E

n∑
t=1

∑
xt∈X

µ(xt|x<t) log
µ(xt|x<t)
ρ′(xt|x<t)

=
1

n
E log

µ(x1..n)

ρ′(x1..n)

=
1

n
E log

µ(x1..n)

ρ(x1..n)

ρ(x1..n)

ρ′(x1..n)
= Ed̄n(µ, ρ) +

1

n
E log

ρ(x1..n)

ρ′(x1..n)
,

where the first term tends to 0 by assumption and the second term is bounded
from above by 1

n
log2→0. Since the sum is bounded from below by 0 we obtain

the statement of the proposition.

Next we consider some negative results. An example of measures µ, ρ and χ
such that ρ predicts µ in absolute distance (or KL divergence) but 1

2
(ρ+χ) does

not, can be constructed similarly to the example from [45] (of a measure ρ which
is a sum of distributions arbitrarily close to µ yet does not predict it). The idea
is to take a measure χ that predicts µ much better than ρ on almost all steps,
but on some steps gives grossly wrong probabilities.

Proposition 2.26. There exist measures µ, ρ and χ such that ρ predicts µ in
absolute distance (KL divergence) but 1

2
(ρ+χ) does not predict µ in absolute

distance (KL divergence).

Proof. Let µ be concentrated on the sequence 11111... (that is µ(xn = 1) = 1

for any n), and let ρ(xn = 1) = n
n+1

with probabilities independent on different
trials. Clearly, ρ predicts µ in both absolute distance and KL divergence. Let
χ(xn = 1) = 1 for all n except on the sequence n= nk = 22k = n2

k−1, k ∈ IN on
which χ(xnk = 1) = nk−1/nk = 2−2k−1 . This implies that χ(11..nk) = 2/nk and
χ(11..nk−1) = χ(11..nk−1

) = 2/nk−1 = 2/
√
nk. It is now easy to see that 1

2
(ρ+χ)

does not predict µ, neither in absolute distance nor in KL divergence. Indeed
for n=nk for some k we have

1
2
(ρ+χ)(xn = 1|1<n) =

ρ(11..n) + χ(11..n)

ρ(1<n) + χ(1<n)
≤ 1/(n+1) + 2/n

1/n + 2/
√
n
→ 0.
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For the (expected) average absolute distance the negative result also holds:

Proposition 2.27. There exist such measures µ, ρ and χ that ρ predicts µ in
average absolute distance but 1

2
(ρ+χ) does not predict µ in (expected) average

absolute distance.

Proof. Let µ be Bernoulli 1/2 distribution and let ρ(xn = 1) = 1/2 for all n
(independently of each other) except for some sequence nk, k ∈ IN on which
ρ(xnk = 1) = 0. Choose nk sparse enough for ρ to predict µ in the average
absolute distance. Let χ be Bernoulli 1/3. Observe that χ assigns non-zero
probabilities to all finite sequences, whereas µ-a.s. from some n on ρ(x1..n) = 0.
Hence 1

2
(ρ+χ)(x1..n)= 1

2
χ(x1..n) and so 1

2
(ρ+χ) does not predict µ.

Thus for the question of whether predictive ability is preserved when an
arbitrary measure is added to the predictive measure, we have the following
table of answers.

Ed̄n d̄n δn Eān ān an

+ ? − − − −

As it can be seen, there remains one open question: whether this property is
preserved under almost sure convergence of the average KL divergence.

It can be inferred from the example in Proposition 2.26 that contaminating
a predicting measure ρ with a measure χ spoils ρ if χ is better than ρ on almost
every step. It thus can be conjectured that adding a measure can only spoil a
predictor on sparse steps, not affecting the average.

2.5 Nonrealizable version of the sequence predic-

tion problem [R1]

In this section we generalize our approach to sequence prediction even further.
Instead of assuming that the measure µ generating the data belongs to some
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set C of measures, we would like to assume that the measure µ is completely
arbitrary. As we know, in this case we cannot hope to get the error converge
to zero. However, we can try to make the error as small as the error of any
predictor from a given set C.

Recall that a predictor ρ is required to give conditional probabilities ρ(xn+1 =

a|x1,...,xn) for all possible histories x1,...,xn. Therefore, it defines itself a prob-
ability measure on the space Ω of one-way infinite sequences. In other words, a
probability measure on Ω can be considered both as a data-generating mecha-
nism and as a predictor.

Thus, given a set C of probability measures on Ω, one can ask two kinds of
questions about C. First, does there exist a predictor ρ, whose forecast prob-
abilities converge (in a certain sense) to the µ-conditional probabilities, if an
arbitrary µ∈C is chosen to generate the data? Here we assume that the “true”
measure that generates the data belongs to the set C of interest, and would like
to construct a predictor that predicts all measures in C. The second type of ques-
tions is as follows: does there exist a predictor that predicts at least as well as
any predictor ρ∈C, if the measure that generates the data comes possibly from
outside of C? Thus, here we consider elements of C as predictors, and we would
like to combine their predictive properties, if this is possible. Note that in this
setting the two questions above concern the same object: a set C of probability
measures on Ω.

Each of these two questions, the realizable and the non-realizable one, have
enjoyed much attention in the literature; the setting for the non-realizable case
is usually slightly different, which is probably why it has not (to the best of the
author’s knowledge) been studied as another facet of the realizable case. The
realizable case has been considered in detail in the previous sections (Section 2.2–
2.4).

The non-realizable case is usually studied in a slightly different, non-probabilistic,
setting. We refer to [18] for a comprehensive overview. It is usually assumed
that the observed sequence of outcomes is an arbitrary (deterministic) sequence;
it is required not to give conditional probabilities, but just deterministic guesses
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(although these guesses can be selected using randomisation). Predictions result
in a certain loss, which is required to be small as compared to the loss of a
given set of reference predictors (experts) C. The losses of the experts and the
predictor are observed after each round. In this approach, it is mostly assumed
that the set C is finite or countable. The main difference with the formulation
considered in this section is that we require a predictor to give probabilities,
and thus the loss is with respect to something never observed (probabilities, not
outcomes). The loss itself is not completely observable in our setting. In this
sense our non-realizable version of the problem is more difficult. Assuming that
the data generating mechanism is probabilistic, even if it is completely unknown,
makes sense in such problems as, for example, game playing, or market analysis.
In these cases one may wish to assign smaller loss to those models or experts
who give probabilities closer to the correct ones (which are never observed), even
though different probability forecasts can often result in the same action. Aim-
ing at predicting probabilities of outcomes also allows us to abstract from the
actual use of the predictions (for example, making bets) and thus from consid-
ering losses in a general form; instead, we can concentrate on those forms of loss
that are more convenient for the analysis. In this latter respect, the problems we
consider are easier than those considered in prediction with expert advice. (How-
ever, in principle, nothing restricts us to considering the simple losses that we
chose; they are just a convenient choice.) Noteworthy, the probabilistic approach
also makes the machinery of probability theory applicable, hopefully making the
problem easier. Another way to look at the difference between the non-realizable
problems of this manuscript and prediction with expert advice is as follows: the
latter is prequential (in the sense of [23]), whereas the former is not.

Let us further break the non-realizable case into two problems. The first
one is as follows. Given a set C of predictors, we want to find a predictor whose
prediction error converges to zero if there is at least one predictor in C whose pre-
diction error converges to zero; we call this problem simply the “non-realizable”
case, or Problem 2 (leaving the name “Problem 1” to the realizable case). The
second non-realizable problem is the “fully agnostic” problem: it is to make the

52



prediction error asymptotically as small as that of the best (for the given process
measure generating the data) predictor in C (we call this Problem 3). Thus, we
now have three problems about a set of process measures C to address.

In this section we show that if the quality of prediction is measured in total
variation, then all the three problems coincide: any solution to any one of them
is a solution to the other two. For the case of expected average KL divergence,
all the three problems are different: the realizable case is strictly easier than non-
realizable (Problem 2), which is, in turn, strictly easier than the fully agnostic
case (Problem 3). We then analyse which results concerning prediction in total
variation can be transferred to which of the problems concerning prediction in
average KL divergence. We will extend the result of Section 2.2 about the
existence of Bayesian predictor from Problem 1 to the (non-realizable) case of
Problem 2, for prediction in expected average KL divergence. We do not have
an analogous result for Problem 3 (and, in fact, conjecture that the opposite
statement holds true). However, for the fully agnostic case of Problem 3, we
show that separability with respect to a certain topology given by KL divergence
is a sufficient (though not a necessary) condition for the existence of a predictor.
This is used to demonstrate that there is a solution to this problem for the set
of all finite-memory process measures, complementing similar results obtained
earlier in different settings. On the other hand, we show that there is no solution
to this problem for the set of all stationary process measures, in contrast to a
result of B. [78] that gives a solution to the realizable case of this problem (that
is, a predictor whose expected average KL error goes to zero if any stationary
process is chosen to generate the data). Finally, we also consider a modified
version of Problem 3, in which the performance of predictors is only compared
on individual sequences. For this problem, we obtain, using a result from [77],
a characterisation of those sets C for which a solution exists in terms of the
Hausdorff dimension.
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2.5.1 Sequence prediction problems

For the two notions of predictive quality introduced, we can now state formally
the sequence prediction problems.
Problem 1(realizable case). Given a set of probability measures C, find a mea-
sure ρ such that ρ predicts in total variation (expected average KL divergence)
every µ∈C, if such a ρ exists.

This is the problem considered in Sections 2.2 (restated here to ease the
comparison). Problem 1 is about finding a predictor for the case when the
process generating the data is known to belong to a given class C. That is, the
set C here is a set of measures that generate the data. Next let us formulate the
questions about C as a set of predictors.
Problem 2 (non-realizable case). Given a set of process measures (predictors)
C, find a process measure ρ such that ρ predicts in total variation (in expected
average KL divergence) every measure ν ∈ P such that there is µ ∈ C which
predicts (in the same sense) ν.

While Problem 2 is already quite general, it does not yet address what can
be called the fully agnostic case: if nothing at all is known about the process ν
generating the data, it means that there may be no µ∈C such that µ predicts
ν, and then, even if we have a solution ρ to the Problem 2, we still do not know
what the performance of ρ is going to be on the data generated by ν, compared
to the performance of the predictors from C. To address this fully agnostic case
we have to introduce the notion of loss.

Definition 2.28. Introduce the almost sure total variation loss of ρ with respect
to µ

ltv(µ,ρ) :=inf{α∈ [0,1] : lim sup
n→∞

v(µ,ρ,x1..n)≤α µ–a.s.},

and the asymptotic KL loss

lKL(ν,ρ) :=lim sup
n→∞

1

n
dn(ν,ρ).

We can now formulate the fully agnostic version of the sequence prediction
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problem.
Problem 3. Given a set of process measures (predictors) C, find a process
measure ρ such that ρ predicts at least as well as any µ in C, if any process
measure ν∈P is chosen to generate the data:

l(ν,ρ)−l(ν,µ)≤0 (2.32)

for every ν∈P and every µ∈C, where l(·,·) is either ltv(·,·) or lKL(·,·).
The three problems just formulated represent different conceptual approaches

to the sequence prediction problem. Let us illustrate the difference by the fol-
lowing informal example. Suppose that the set C is that of all (ergodic, finite-
state) Markov chains. Markov chains being a familiar object in probability and
statistics, we can easily construct a predictor ρ that predicts every µ∈ C (for
example, in expected average KL divergence, see [54]). That is, if we know that
the process µ generating the data is Markovian, we know that our predictor is
going to perform well. This is the realizable case of Problem 1. In reality, rarely
can we be sure that the Markov assumption holds true for the data at hand.
We may believe, however, that it is still a reasonable assumption, in the sense
that there is a Markovian model which, for our purposes (for the purposes of
prediction), is a good model of the data. Thus we may assume that there is a
Markov model (a predictor) that predicts well the process that we observe, and
we would like to combine the predictive qualities of all these Markov models.
This is the “non-realizable” case of Problem 2. Note that this problem is more
difficult than the first one; in particular, a process ν generating the data may be
singular with respect to any Markov process, and still be predicted well (in the
sense of expected average KL divergence, for example) by some of them. Still,
here we are making some assumptions about the process generating the data,
and, if these assumptions are wrong, then we do not know anything about the
performance of our predictor. Thus, we may ultimately wish to acknowledge
that we do not know anything at all about the data; we still know a lot about
Markov processes, and we would like to use this knowledge on our data. If there
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is anything at all Markovian in it (that is, anything that can be captured by a
Markov model), then we would like our predictor to use it. In other words, we
want to have a predictor that predicts any process measure whatsoever (at least)
as well as any Markov predictor. This is the “fully agnostic” case of Problem 3.

Of course, Markov processes were just mentioned as an example, while in
this section we are only concerned with the most general case of arbitrary (un-
countable) sets C of process measures.

The following statement is rather obvious.

Proposition 2.29. Any solution to Problem 3 is a solution to Problem 2, and
any solution to Problem 2 is a solution to Problem 1.

Despite the conceptual differences in formulations, it may be somewhat un-
clear whether the three problems are indeed different. It appears that this de-
pends on the measure of predictive quality chosen: for the case of prediction
in total variation distance all the three problems coincide, while for the case of
prediction in expected average KL divergence they are different.

2.5.2 Characterizations of learnable classes for prediction

in total variation

As it was mentioned, a measure µ is absolutely continuous with respect to a
measure ρ if and only if ρ predicts µ in total variation distance. This reduces
studying at least Problem 1 for total variation distance to studying the relation
of absolute continuity. Introduce the notation ρ≥tvµ for this relation.

Let us briefly recall some facts we know about ≥tv; details can be found,
for example, in [70]. Let [P]tv denote the set of equivalence classes of P with
respect to ≥tv, and for µ∈Ptv denote [µ] the equivalence class that contains µ.
Two elements σ1,σ2∈ [P]tv (or σ1,σ2∈P) are called disjoint (or singular) if there
is no ν ∈ [P]tv such that σ1 ≥tv ν and σ2 ≥tv ν; in this case we write σ1 ⊥tv σ2.
We write [µ1]+[µ2] for [1

2
(µ1 +µ2)]. Every pair σ1,σ2 ∈ [P]tv has a supremum

sup(σ1,σ2)=σ1+σ2. Introducing into [P]tv an extra element 0 such that σ≥tv 0
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for all σ ∈ [P]tv, we can state that for every ρ,µ ∈ [P]tv there exists a unique
pair of elements µs and µa such that µ=µa+µs, ρ≥µa and ρ⊥tv µs. (This is
a form of Lebesgue decomposition.) Moreover, µa = inf(ρ,µ). Thus, every pair
of elements has a supremum and an infimum. Moreover, every bounded set of
disjoint elements of [P]tv is at most countable.

Furthermore, we introduce the (unconditional) total variation distance be-
tween process measures.

Definition 2.30 (unconditional total variation distance). The (unconditional)
total variation distance is defined as

v(µ,ρ) :=sup
A∈B
|µ(A)−ρ(A)|.

Known characterizations of those sets C that are bounded with respect to
≥tv can now be related to our prediction problems 1-3 as follows.

Theorem 2.31. Let C⊂P. The following statements about C are equivalent.

(i) There exists a solution to Problem 1 in total variation.

(ii) There exists a solution to Problem 2 in total variation.

(iii) There exists a solution to Problem 3 in total variation.

(iv) C is upper-bounded with respect to ≥tv.

(v) There exists a sequence µk∈C, k∈N such that for some (equivalently, for
every) sequence of weights wk ∈ (0,1], k ∈ N such that

∑
k∈Nwk = 1, the

measure ν=
∑

k∈Nwkµk satisfies ν≥tvµ for every µ∈C.

(vi) C is separable with respect to the total variation distance.

(vii) Let C+ :={µ∈P :∃ρ∈C ρ≥tvµ}. Every disjoint (with respect to ≥tv) subset
of C+ is at most countable.
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Moreover, every solution to any of the Problems 1-3 is a solution to the other
two, as is any upper bound for C. The sequence µk in the statement (v) can be
taken to be any dense (in the total variation distance) countable subset of C (cf.
(vi)), or any maximal disjoint (with respect to ≥tv) subset of C+ of statement
(vii), in which every measure that is not in C is replaced by any measure from C

that dominates it.

Proof. The implications (i)⇐(ii)⇐(iii) are obvious (cf. Proposition 2.29). The
equivalence (iv)⇔ (i) is a reformulation of the result of Theorem 2.2. (i)⇒ (ii)

follows from the equivalence (i)⇔ (iv) and the transitivity of ≥tv; (i)⇒ (iii)

follows from the transitivity of ≥tv and from Lemma 2.32 below: indeed, from
Lemma 2.32 we have ltv(ν,µ) = 0 if µ≥tv ν and ltv(ν,µ) = 1 otherwise. From
this and the transitivity of ≥tv it follows that if ρ ≥tv µ then also ltv(ν,ρ) ≤
ltv(ν,µ) for all ν ∈ P. The equivalence of (v), (vi), and (i) was established in
Theorems 2.6 and 2.9. The equivalence of (iv) and (vii) was proven in [70]. The
concluding statements of the theorem are easy to demonstrate from the results
cited above.

The following lemma is an easy consequence of [11].

Lemma 2.32. Let µ,ρ be two process measures. Then v(µ,ρ,x1..n) converges to
either 0 or 1 with µ-probability 1.

Proof. Assume that µ is not absolutely continuous with respect to ρ (the other
case is covered by [11]). By Lebesgue decomposition theorem, the measure µ
admits a representation µ = αµa+(1−α)µs where α ∈ [0,1] and the measures
µa and µs are such that µa is absolutely continuous with respect to ρ and µs

is singular with respect to ρ. Let W be such a set that µa(W ) = ρ(W ) = 1

and µs(W ) = 0. Note that we can take µa = µ|W and µs = µ|X∞\W . From
[11] we have v(µa,ρ,x1..n)→ 0 µa-a.s., as well as v(µa,µ,x1..n)→ 0 µa-a.s. and
v(µs,µ,x1..n)→0 µs-a.s. Moreover, v(µs,ρ,x1..n)≥|µs(W |x1..n)−ρ(W |x1..n)|=1 so
that v(µs,ρ,x1..n)→1 µs-a.s. Furthermore,

v(µ,ρ,x1..n)≤v(µ,µa,x1..n)+v(µa,ρ,x1..n)=I
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and
v(µ,ρ,x1..n)≥−v(µ,µs,x1..n)+v(µs,ρ,x1..n)=II.

We have I→ 0 µa-a.s. and hence µ|W -a.s., as well as II→ 1 µs-a.s. and hence
µ|X∞\W -a.s. Thus,

µ(v(µ,ρ,x1..n)→0 or 1)

≤µ(W )µ|W (I→0)+µ(X∞\W )µ|X∞\W (II→1)=µ(W )+µ(X∞\W )=1,

which concludes the proof.

Remark. Using Lemma 2.32 we can also define expected (rather than almost
sure) total variation loss of ρ with respect to µ, as the µ-probability that v(µ,ρ)

converges to 1:

l′tv(µ,ρ) :=µ{x1,x2,···∈X∞ :v(µ,ρ,x1..n)→1}.

Then Problem 3 can be reformulated for this notion of loss. However, it is easy
to see that for this reformulation Theorem 2.31 holds true as well.

Thus, we can see that, for the case of prediction in total variation, all the
sequence prediction problems formulated reduce to studying the relation of ab-
solute continuity for process measures and those families of measures that are
absolutely continuous (have a density) with respect to some measure (a predic-
tor).

2.5.3 Characterizations of learnable classes for prediction

in expected average KL divergence

First of all, we have to observe that for prediction in KL divergence Problems 1, 2,
and 3 are different, as the following theorem shows. While the examples provided
in the proof are artificial, there is a very important example illustrating the
difference between Problem 1 and Problem 3 for expected average KL divergence:

59



the set S of all stationary processes, given in Theorem 2.39 in the end of this
section.

Theorem 2.33. For the case of prediction in expected average KL divergence,
Problems 1, 2 and 3 are different: there exists a set C1⊂P for which there is
a solution to Problem 1 but there is no solution to Problem 2, and there is a
set C2⊂P for which there is a solution to Problem 2 but there is no solution to
Problem 3.

Proof. We have to provide two examples. Fix the binary alphabetX={0,1}. For
each deterministic sequence t=t1,t2,···∈X∞ construct the process measure γt as
follows: γt(xn=tn|t1..n−1):=1− 1

n+1
and for x1..n−1 6=t1..n−1 let γt(xn=0|x1..n−1)=

1/2, for all n∈N. That is, γt is Bernoulli i.i.d. 1/2 process measure strongly
biased towards a specific deterministic sequence, t. Let also γ(x1..n)=2−n for all
x1..n∈Xn, n∈N (the Bernoulli i.i.d. 1/2). For the set C1 :={γt :t∈X∞} we have a
solution to Problem 1: indeed, dn(γt,γ)≤1=o(n). However, there is no solution
to Problem 2. Indeed, for each t∈D we have dn(t,γt)= logn=o(n) (that is, for
every deterministic measure there is an element of C1 which predicts it), while
by Lemma 2.5 for every ρ∈P there exists t∈D such that dn(t,ρ)≥n for all n∈N
(that is, there is no predictor which predicts every measure that is predicted by
at least one element of C1).

The second example is similar. For each deterministic sequence t=t1,t2,···∈D
construct the process measure γt as follows: γ′t(xn = tn|t1..n−1) := 2/3 and for
x1..n−1 6=t1..n−1 let γ′t(xn=0|x1..n−1)=1/2, for all n∈N. It is easy to see that γ is
a solution to Problem 2 for the set C2 :={γ′t :t∈X∞}. Indeed, if ν∈P is such that
dn(ν,γ′)=o(n) then we must have ν(t1..n)=o(1). From this and the fact that γ
and γ′ coincide (up to O(1)) on all other sequences we conclude dn(ν,γ)=o(n).
However, there is no solution to Problem 3 for C2. Indeed, for every t∈D we
have dn(t,γ′t) = nlog3/2+o(n). Therefore, if ρ is a solution to Problem 3 then
lim sup 1

n
dn(t,ρ)≤ log3/2<1 which contradicts Lemma 2.5.

Thus, prediction in expected average KL divergence turns out to be a more
complicated matter than prediction in total variation. The next idea is to try and
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see which of the facts about prediction in total variation can be generalized to
some of the problems concerning prediction in expected average KL divergence.

First, observe that, for the case of prediction in total variation, the equiva-
lence of Problems 1 and 2 was derived from the transitivity of the relation ≥tv of
absolute continuity. For the case of expected average KL divergence, the relation
“ρ predicts µ in expected average KL divergence” is not transitive (and Prob-
lems 1 and 2 are not equivalent). However, for Problem 2 we are interested in
the following relation: ρ “dominates” µ if ρ predicts every ν such that µ predicts
ν. Denote this relation by ≥KL:

Definition 2.34 (≥KL). We write ρ≥KLµ if for every ν∈P the equality lim sup 1
n
dn(ν,µ)=

0 implies lim sup 1
n
dn(ν,ρ)=0.

The relation ≥KL has some similarities with ≥tv. First of all, ≥KL is also
transitive (as can be easily seen from the definition). Moreover, similarly to ≥tv,
one can show that for any µ,ρ any strictly convex combination αµ+(1−α)ρ is a
supremum of {ρ,µ} with respect to ≥KL. Next we will obtain a characterization
of predictability with respect to ≥KL similar to one of those obtained for ≥tv.

The key observation is the following. If there is a solution to Problem 2 for
a set C then a solution can be obtained as a Bayesian mixture over a countable
subset of C. For total variation this is the statement (v) of Theorem 2.31.

Theorem 2.35. Let C be a set of probability measures on Ω. If there is a measure
ρ such that ρ≥KLµ for every µ∈C (ρ is a solution to Problem 2) then there is a
sequence µk∈C, k∈N, such that

∑
k∈Nwkµk≥KLµ for every µ∈C, where wk are

some positive weights.

The proof is deferred to Section 2.6.3.
For the case of Problem 3, we do not have results similar to Theorem 2.35 (or

statement (v) of Theorem 2.31); in fact, we conjecture that the opposite is true:
there exists a (measurable) set C of measures such that there is a solution to
Problem 3 for C, but there is no Bayesian solution to Problem 3, meaning that
there is no probability distribution on C (discrete or not) such that the mixture
over C with respect to this distribution is a solution to Problem 3 for C.
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However, we can take a different route and extend another part of Theo-
rem 2.31 to obtain a characterization of sets C for which a solution to Problem 3
exists.

We have seen that, in the case of prediction in total variation, separability
with respect to the topology of this distance is a necessary and sufficient con-
dition for the existence of a solution to Problems 1-3. In the case of expected
average KL divergence the situation is somewhat different, since, first of all,
(asymptotic average) KL divergence is not a metric. While one can introduce a
topology based on it, separability with respect to this topology turns out to be
a sufficient but not a necessary condition for the existence of a predictor, as is
shown in the next theorem.

Definition 2.36. Define the distance d∞(µ1,µ2) on process measures as follows

d∞(µ1,µ2)=lim sup
n→∞

sup
x1..n∈Xn

1

n

∣∣∣∣log
µ1(x1..n)

µ2(x1..n)

∣∣∣∣, (2.33)

where we assume log0/0:=0.

Clearly, d∞ is symmetric and satisfies the triangle inequality, but it is not
exact. Moreover, for every µ1,µ2 we have

lim sup
n→∞

1

n
dn(µ1,µ2)≤d∞(µ1,µ2). (2.34)

The distance d∞(µ1,µ2) measures the difference in behaviour of µ1 and µ2 on
all individual sequences. Thus, using this distance to analyse Problem 3 is most
close to the traditional approach to the non-realizable case, which is formulated
in terms of predicting individual deterministic sequences.

Theorem 2.37. (i) Let C be a set of process measures. If C is separable with
respect to d∞ then there is a solution to Problem 3 for C, for the case of
prediction in expected average KL divergence.

(ii) There exists a set of process measures C such that C is not separable with
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respect to d∞, but there is a solution to Problem 3 for this set, for the case
of prediction in expected average KL divergence.

Proof. For the first statement, let C be separable and let (µk)k∈N be a dense
countable subset of C. Define ν :=

∑
k∈Nwkµk, where wk are any positive summable

weights. Fix any measure τ and any µ∈C. We will show that lim supn→∞
1
n
dn(τ,ν)≤

lim supn→∞
1
n
dn(τ,µ). For every ε, find such a k∈N that d∞(µ,µk)≤ε. We have

dn(τ,ν)≤dn(τ,wkµk)=Eτ log
τ(x1..n)

µk(x1..n)
−logwk

=Eτ log
τ(x1..n)

µ(x1..n)
+Eτ log

µ(x1..n)

µk(x1..n)
−logwk

≤dn(τ,µ)+ sup
x1..n∈Xn

log

∣∣∣∣ µ(x1..n)

µk(x1..n)

∣∣∣∣−logwk.

From this, dividing by n taking lim supn→∞ on both sides, we conclude

lim sup
n→∞

1

n
dn(τ,ν)≤ lim sup

n→∞

1

n
dn(τ,µ)+ε.

Since this holds for every ε>0 the first statement is proven.
The second statement is proven by the following example. Let C be the set

of all deterministic sequences (measures concentrated on just one sequence) such
that the number of 0s in the first n symbols is less than

√
n, for all n∈N. Clearly,

this set is uncountable. It is easy to check that µ1 6=µ2 implies d∞(µ1,µ2) =∞
for every µ1,µ2∈C, but the predictor ν, given by ν(xn=0)=1/n independently
for different n, predicts every µ∈C in expected average KL divergence. Since all
elements of C are deterministic, ν is also a solution to Problem 3 for C.

Although simple, Theorem 2.37 can be used to establish the existence of a
solution to Problem 3 for an important class of process measures: that of all
processes with finite memory, as the next theorem shows. Results similar to
Theorem 2.38 are known in different settings, e.g., [91, 76, 17] and others.

63



Theorem 2.38. There exists a solution to Problem 3 for prediction in expected
average KL divergence for the set of all finite-memory process measures M :=

∪k∈NMk.

Proof. We will show that the set M is separable with respect to d∞. Then the
statement will follow from Theorem 2.37. It is enough to show that each set Mk

is separable with respect to d∞.
For simplicity, assume that the alphabet is binary (|X|=2; the general case

is analogous). Observe that the family Mk of k-order stationary binary-valued
Markov processes is parametrized by |X|k [0,1]-valued parameters: probability of
observing 0 after observing x1..k, for each x1..k∈Xk. Note that this parametriza-
tion is continuous (as a mapping from the parameter space with the Euclidean
topology to Mk with the topology of d∞). Indeed, for any µ1,µ2∈Mk and every
x1..n∈Xn such that µi(x1..n) 6=0, i=1,2, it is easy to see that

1

n

∣∣∣∣log
µ1(x1..n)

µ2(x1..n)

∣∣∣∣≤ sup
x1..k+1

1

k+1

∣∣∣∣log
µ1(x1..k+1)

µ2(x1..k+1)

∣∣∣∣, (2.35)

so that the right-hand side of (2.35) also upper-bounds d∞(µ1,µ2), implying
continuity of the parametrization.

It follows that the set µkq , q∈Q|X|
k of all stationary k-order Markov processes

with rational values of all the parameters (Q :=Q∩[0,1]) is dense in Mk, proving
the separability of the latter set.

Another important example is the set of all stationary process measures S.
This example also illustrates the difference between the prediction problems that
we consider. For this set a solution to Problem 1 was given in [78]. In contrast,
here we show that there is no solution to Problem 3 for S.

Theorem 2.39. There is no solution to Problem 3 for the set of all stationary
processes S.

Proof. This proof is based on the construction similar to the one used in [78] to
demonstrate impossibility of consistent prediction of stationary processes with-
out Cesaro averaging.
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Let m be a Markov chain with states 0,1,2,... and state transitions defined
as follows. From each sate k ∈N∪{0} the chain passes to the state k+1 with
probability 2/3 and to the state 0 with probability 1/3. It is easy to see that
this chain possesses a unique stationary distribution on the set of states (see,
e.g., [83]); taken as the initial distribution it defines a stationary ergodic process
with values in N∪{0}. Fix the ternary alphabet X={a,0,1}. For each sequence
t=t1,t2,···∈{0,1}∞ define the process µt as follows. It is a deterministic function
of the chain m. If the chain is in the state 0 then the process µt outputs a; if
the chain m is in the state k>0 then the process outputs tk. That is, we have
defined a hidden Markov process which in the state 0 of the underlying Markov
chain always outputs a, while in other states it outputs either 0 or 1 according
to the sequence t.

To show that there is no solution to Problem 3 for S, we will show that there
is no solution to Problem 3 for the smaller set C := {µt : t∈ {0,1}∞}. Indeed,
for any t∈{0,1}∞ we have dn(t,µt) =nlog3/2+o(n). Then if ρ is a solution to
Problem 3 for C we should have lim supn→∞

1
n
dn(t,ρ)≤ log3/2<1 for every t∈D,

which contradicts Lemma 2.5.

From the proof of Theorem 2.39 one can see that, in fact, the statement
that is proven is stronger: there is no solution to Problem 3 for the set of all
functions of stationary ergodic countable-state Markov chains. We conjecture
that a solution to Problem 2 exists for the latter set, but not for the set of all
stationary processes.

As we have seen in the statements above, the set of all deterministic mea-
sures D plays an important role in the analysis of the predictors in the sense of
Problem 3. Therefore, an interesting question is to characterize those sets C of
measures for which there is a predictor ρ that predicts every individual sequence
at least as well as any measure from C. Such a characterization can be obtained
in terms of Hausdorff dimension, using a result of [77], that shows that Haus-
dorff dimension of a set characterizes the optimal prediction error that can be
attained by any predictor.
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For a set A⊂X∞ denote H(A) its Hausdorff dimension (see, for example,
[10] for its definition).

Theorem 2.40. Let C⊂P. The following statements are equivalent.

(i) There is a measure ρ∈P that predicts every individual sequence at least
as well as the best measure from C: for every µ ∈ C and every sequence
x1,x2,···∈X∞ we have

lim inf
n→∞

− 1

n
logρ(x1..n)≤ lim inf

n→∞
− 1

n
logµ(x1..n). (2.36)

(ii) For every α∈[0,1] the Hausdorff dimension of the set of sequences on which
the average prediction error of the best measure in C is not greater than α
is bounded by α/log|X|:

H({x1,x2,···∈X∞ : inf
µ∈C

lim inf
n→∞

− 1

n
logµ(x1..n)≤α})≤α/log|X|. (2.37)

Proof. The implication (i)⇒(ii) follows directly from [77] where it is shown that
for every measure ρ one must have

H({x1,x2,···∈X∞ : lim inf
n→∞

− 1

n
logρ(x1..n)≤α})≤α/log|X|.

To show the opposite implication, we again refer to [77]: for every set A⊂X∞

there is a measure ρA such that

lim inf
n→∞

− 1

n
logρA(x1..n)≤H(A)log|X|. (2.38)

For each α∈ [0,1] define Aα := {x1,x2,··· ∈X∞ : infµ∈Clim infn→∞− 1
n
logµ(x1..n)≤

α}). By assumption, H(Aα)≤α/log|X|, so that from (2.38) for all x1,x2,···∈Aα
we obtain

lim inf
n→∞

− 1

n
logρA(x1..n)≤α. (2.39)

Furthermore, define ρ :=
∑

q∈QwqρAq , where Q= [0,1]∩Q is the set of rationals
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in [0,1] and (wq)q∈Q is any sequence of positive reals satisfying
∑

q∈Qwq=1. For
every α∈ [0,1] let qk∈Q, k∈N be such a sequence that 0≤ qk−α≤1/k. Then,
for every n∈N and every x1,x2,···∈Aqk we have

− 1

n
logρ(x1..n)≤− 1

n
logρq(x1..n)− logwqk

n
.

From this and (2.39) we get

lim inf
n→∞

− 1

n
logρ(x1..n)≤ lim inf

n→∞
ρqk(x1..n)+1/k≤qk+1/k.

Since this holds for every k∈N, it follows that for all x1,x2,···∈∩k∈NAqk =Aα we
have

lim inf
n→∞

− 1

n
logρ(x1..n)≤ inf

k∈N
(qk+1/k)=α,

which completes the proof of the implication (ii)⇒(i).

2.6 Longer proofs

2.6.1 Proof of Theorem 2.7

The proof is broken into the same steps as the (simpler) proof of Theorem 2.6,
to make the analogy explicit and the proof more understandable.

Proof. Define the weights wk :=wk−2, where w is the normalizer 6/π2.
Step 1: densities. Define the sets

T nµ :=

{
x1..n∈Xn :µ(x1..n)≥ 1

n
ρ(x1..n)

}
. (2.40)

Using Markov’s inequality, we derive

µ(Xn\T nµ )=µ

(
ρ(x1..n)

µ(x1..n)
>n

)
≤ 1

n
Eµ

ρ(x1..n)

µ(x1..n)
=

1

n
, (2.41)

so that µ(T nµ )→1. (Note that if µ is singular with respect to ρ, as is typically
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the case, then ρ(x1..n)
µ(x1..n)

converges to 0 µ-a.e. and one can replace 1
n
in (2.40) by 1,

while still having µ(T nµ )→1.)
Step 2n: a countable cover, time n. Fix an n∈N. Define mn

1 :=maxµ∈Cρ(T nµ )

(sinceXn are finite all suprema are reached). Find any µn1 such that ρn1 (T nµn1 )=mn
1

and let T n1 :=T nµn1 . For k>1, let mn
k := maxµ∈Cρ(T nµ \T nk−1). If mn

k >0, let µnk be
any µ ∈ C such that ρ(T nµnk\T

n
k−1) =mn

k , and let T nk := T nk−1∪T nµnk ; otherwise let
T nk :=T nk−1. Observe that (for each n) there is only a finite number of positive
mn
k , since the set Xn is finite; let Kn be the largest index k such that mn

k > 0.
Let

νn :=
Kn∑
k=1

wkµ
n
k . (2.42)

As a result of this construction, for every n∈N every k≤Kn and every x1..n∈T nk
using (2.40) we obtain

νn(x1..n)≥wk
1

n
ρ(x1..n). (2.43)

Step 2: the resulting predictor. Finally, define

ν :=
1

2
γ+

1

2

∑
n∈N

wnνn, (2.44)

where γ is the i.i.d. measure with equal probabilities of all x ∈ X (that is,
γ(x1..n) = |X|−n for every n ∈ N and every x1..n ∈Xn). We will show that ν
predicts every µ∈C, and then in the end of the proof (Step r) we will show how
to replace γ by a combination of a countable set of elements of C (in fact, γ is
just a regularizer which ensures that ν-probability of any word is never too close
to 0).

Step 3: ν predicts every µ ∈ C. Fix any µ ∈ C. Introduce the parame-
ters εnµ ∈ (0,1), n ∈ N, to be defined later, and let jnµ := 1/εnµ. Observe that
ρ(T nk \T nk−1)≥ρ(T nk+1\T nk ), for any k>1 and any n∈N, by definition of these sets.
Since the sets T nk \T nk−1, k∈N are disjoint, we obtain ρ(T nk \T nk−1)≤1/k. Hence,
ρ(T nµ \T nj )≤ εnµ for some j ≤ jnµ , since otherwise mn

j = maxµ∈Cρ(T nµ \T njnµ )>εnµ so
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that ρ(T njnµ+1\T njnµ )>εnµ=1/jnµ , which is a contradiction. Thus,

ρ(T nµ \T njnµ )≤εnµ. (2.45)

We can upper-bound µ(T nµ \T njnµ ) as follows. First, observe that

dn(µ,ρ)=−
∑

x1..n∈Tnµ ∩Tnjnµ

µ(x1..n)log
ρ(x1..n)

µ(x1..n)

−
∑

x1..n∈Tnµ \Tnjnµ

µ(x1..n)log
ρ(x1..n)

µ(x1..n)

−
∑

x1..n∈Xn\Tnµ

µ(x1..n)log
ρ(x1..n)

µ(x1..n)

=I+II+III. (2.46)

Then, from (2.40) we get
I≥−logn. (2.47)

Observe that for every n∈N and every set A⊂Xn, using Jensen’s inequality we
can obtain

−
∑

x1..n∈A

µ(x1..n)log
ρ(x1..n)

µ(x1..n)
=−µ(A)

∑
x1..n∈A

1

µ(A)
µ(x1..n)log

ρ(x1..n)

µ(x1..n)

≥−µ(A)log
ρ(A)

µ(A)
≥−µ(A)logρ(A)− 1

2
. (2.48)

Thus, from (2.48) and (2.45) we get

II≥−µ(T nµ \T njnµ )logρ(T nµ \T njnµ )−1/2≥−µ(T nµ \T njnµ )logεnµ−1/2. (2.49)
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Furthermore,

III≥
∑

x1..n∈Xn\Tnµ

µ(x1..n)logµ(x1..n)≥µ(Xn\T nµ )log
µ(Xn\T nµ )

|Xn\T nµ |

≥−1

2
−µ(Xn\T nµ )nlog|X|≥−1

2
−log|X|, (2.50)

where in the second inequality we have used the fact that entropy is maximized
when all events are equiprobable, in the third one we used |Xn\T nµ |≤|X|n, while
the last inequality follows from (2.41). Combining (2.46) with the bounds (2.47),
(2.49) and (2.50) we obtain

dn(µ,ρ)≥−logn−µ(T nµ \T njnµ )logεnµ−1−log|X|,

so that
µ(T nµ \T njnµ )≤ 1

−logεnµ

(
dn(µ,ρ)+logn+1+log|X|

)
. (2.51)

Since dn(µ,ρ)=o(n), we can define the parameters εnµ in such a way that −logεnµ=

o(n) while at the same time the bound (2.51) gives µ(T nµ \T njnµ )=o(1). Fix such
a choice of εnµ. Then, using µ(T nµ )→1, we can conclude

µ(Xn\T njnµ )≤µ(Xn\T nµ )+µ(T nµ \T njnµ )=o(1). (2.52)

We proceed with the proof of dn(µ,ν)=o(n). For any x1..n∈T njnµ we have

ν(x1..n)≥ 1

2
wnνn(x1..n)≥ 1

2
wnwjnµ

1

n
ρ(x1..n)=

wnw

2n
(εnµ)2ρ(x1..n), (2.53)

where the first inequality follows from (2.44), the second from (2.43), and in the
equality we have used wjnµ =w/(jnµ)2 and jnµ =1/εµn. Next we use the decomposi-
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tion

dn(µ,ν)=−
∑

x1..n∈Tnjnµ

µ(x1..n)log
ν(x1..n)

µ(x1..n)
−

∑
x1..n∈Xn\Tn

jnµ

µ(x1..n)log
ν(x1..n)

µ(x1..n)
=I+II.

(2.54)
From (2.53) we find

I≤−log
(wnw

2n
(εnµ)2

)
−

∑
x1..n∈Tnjnµ

µ(x1..n)log
ρ(x1..n)

µ(x1..n)

=(1+3logn−2logεnµ−2logw)+

dn(µ,ρ)+
∑

x1..n∈Xn\Tn
jnµ

µ(x1..n)log
ρ(x1..n)

µ(x1..n)


≤o(n)−

∑
x1..n∈Xn\Tn

jnµ

µ(x1..n)logµ(x1..n)

≤o(n)+µ(Xn\T njnµ )nlog|X|=o(n), (2.55)

where in the second inequality we have used −logεnµ = o(n) and dn(µ,ρ) = o(n),
in the last inequality we have again used the fact that the entropy is maximized
when all events are equiprobable, while the last equality follows from (2.52).
Moreover, from (2.44) we find

II≤ log2−
∑

x1..n∈Xn\Tn
jnµ

µ(x1..n)log
γ(x1..n)

µ(x1..n)
≤1+nµ(Xn\T njnµ )log|X|=o(n), (2.56)

where in the last inequality we have used γ(x1..n) = |X|−n and µ(x1..n)≤1, and
the last equality follows from (2.52).

From (2.54), (2.55) and (2.56) we conclude 1
n
dn(ν,µ)→0.

Step r: the regularizer γ. It remains to show that the i.i.d. regularizer γ in
the definition of ν (2.44), can be replaced by a convex combination of a countably
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many elements from C. Indeed, for each n∈N, denote

An :={x1..n∈Xn :∃µ∈C µ(x1..n) 6=0},

and let for each x1..n∈Xn the measure µx1..n be any measure from C such that
µx1..n(x1..n)≥ 1

2
supµ∈Cµ(x1..n). Define

γ′n(x′1..n) :=
1

|An|
∑

x1..n∈An

µx1..n(x′1..n),

for each x′1..n∈An, n∈N, and let γ′ :=
∑

k∈Nwkγ
′
k. For every µ∈C we have

γ′(x1..n)≥wn|An|−1µx1..n(x1..n)≥ 1

2
wn|X|−nµ(x1..n)

for every n∈N and every x1..n∈An, which clearly suffices to establish the bound
II=o(n) as in (2.56).

2.6.2 Proof of Theorem 2.22

Proof. Again the second statement (about absolute distance) follows from the
first one and Lemma 2.18, so that we only have to prove the statement about
KL divergence.

Introduce the symbol En for µ-expectation over xn conditional on x<n. Con-
sider random variables ln=logµ(xn|x<n)

ρ(xn|x<n)
and l̄n= 1

n

∑n
t=1lt. Observe that δn=Enln,

so that the random variables mn= ln−δn form a martingale difference sequence
(that is, Enmn=0) with respect to the standard filtration defined by x1,...,xn,... .
Let also m̄n= 1

n

∑n
t=1mt. We will show that m̄n→0 µ-a.s. and l̄n→0 µ-a.s. which

implies d̄n→0 µ-a.s.
Note that

l̄n =
1

n
log

µ(x1..n)

ρ(x1..n)
≤ log c−1

n

n
→ 0.

Thus to show that l̄n goes to 0 we need to bound it from below. It is easy to see
that nl̄n is (µ-a.s.) bounded from below by a constant, since ρ(x1..n)

µ(x1..n)
is a positive
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µ-martingale whose expectation is 1, and so it converges to a finite limit µ-a.s.
by Doob’s submartingale convergence theorem, see e.g. [83, p.508].

Next we will show that m̄n→0 µ-a.s. We have

mn = log
µ(x1..n)

ρ(x1..n)
− log

µ(x<n)

ρ(x<n)
− En log

µ(x1..n)

ρ(x1..n)
+ En log

µ(x<n)

ρ(x<n)

= log
µ(x1..n)

ρ(x1..n)
− En log

µ(x1..n)

ρ(x1..n)
.

Let f(n) be some function monotonically increasing to infinity such that

∞∑
n=1

(log c−1
n + f(n))2

n2
< ∞ (2.57)

(e.g. choose f(n) = logn and exploit (logc−1
n +f(n))2 ≤ 2(logc−1

n )2 +2f(n)2 and
(2.31).) For a sequence of random variables λn define

(λn)+(f) =

{
λn if λn ≥ −f(n)

0 otherwise

and λ−(f)
n =λn−λ+(f)

n . Introduce also

m+
n =

(
log

µ(x1..n)

ρ(x1..n)

)+(f)

− En
(

log
µ(x1..n)

ρ(x1..n)

)+(f)

,

m−n =mn−m+
n and the averages m̄+

n and m̄−n . Observe that m+
n is a martingale

difference sequence. Hence to establish the convergence m̄+
n → 0 we can use

the martingale strong law of large numbers [83, p.501], which states that, for a
martingale difference sequence γn, if E(nγ̄n)2 <∞ and

∑∞
n=1Eγ2

n/n
2 <∞ then

γ̄n→ 0 a.s. Indeed, for m+
n the first condition is trivially satisfied (since the

expectation in question is a finite sum of finite numbers), and the second follows
from the fact that |m+

n |≤ logc−1
n +f(n) and (2.57).
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Furthermore, we have

m−n =

(
log

µ(x1..n)

ρ(x1..n)

)−(f)

− En
(

log
µ(x1..n)

ρ(x1..n)

)−(f)

.

As it was mentioned before, logµ(x1..n)
ρ(x1..n)

converges µ-a.s. either to (positive) infinity

or to a finite number. Hence
(

logµ(x1..n)
ρ(x1..n)

)−(f)

is non-zero only a finite number of
times, and so its average goes to zero. To see that

En
(

log
µ(x1..n)

ρ(x1..n)

)−(f)

→0

we write

En
(

log
µ(x1..n)

ρ(x1..n)

)−(f)

=
∑
xn∈X

µ(xn|x<n)

(
log

µ(x<n)

ρ(x<n)
+ log

µ(xn|x<n)

ρ(xn|x<n)

)−(f)

≥
∑
xn∈X

µ(xn|x<n)

(
log

µ(x<n)

ρ(x<n)
+ log µ(xn|x<n)

)−(f)

and note that the first term in brackets is bounded from below, and so for the
sum in brackets to be less than −f(n) (which is unbounded) the second term
log µ(xn|x<n) has to go to −∞, but then the expectation goes to zero since
limu→0ulogu=0.

Thus we conclude that m̄−n → 0 µ-a.s., which together with m̄+
n → 0 µ-a.s.

implies m̄n→ 0 µ-a.s., which, finally, together with l̄n→ 0 µ-a.s. implies d̄n→ 0

µ-a.s.

2.6.3 Proof of Theorem 2.35

Proof. This proof follows the same step as the proof of Theorem 2.7 (presented
in Section 2.6.1) but is a bit more involved.

Define the sets Cµ as the set of all measures τ ∈P such that µ predicts τ in
expected average KL divergence. Let C+ :=∪µ∈CCµ. For each τ ∈C+ let p(τ) be
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any (fixed) µ∈C such that τ ∈Cµ. In other words, C+ is the set of all measures
that are predicted by some of the measures in C, and for each measure τ in C+

we designate one “parent” measure p(τ) from C such that p(τ) predicts τ .
Define the weights wk :=1/k(k+1), for all k∈N.

Step 1. For each µ∈ C+ let δn be any monotonically increasing function such
that δn(µ)=o(n) and dn(µ,p(µ))=o(δn(µ)). Define the sets

Un
µ :=

{
x1..n∈Xn :µ(x1..n)≥ 1

n
ρ(x1..n)

}
, (2.58)

V n
µ :=

{
x1..n∈Xn :p(µ)(x1..n)≥2−δn(µ)µ(x1..n)

}
, (2.59)

and
T nµ :=Un

µ ∩V n
µ . (2.60)

We will upper-bound µ(T nµ ). First, using Markov’s inequality, we derive

µ(Xn\Un
µ )=µ

(
ρ(x1..n)

µ(x1..n)
>n

)
≤ 1

n
Eµ

ρ(x1..n)

µ(x1..n)
=

1

n
. (2.61)

Next, observe that for every n∈N and every set A⊂Xn, using Jensen’s inequality
we can obtain

−
∑

x1..n∈A

µ(x1..n)log
ρ(x1..n)

µ(x1..n)
=−µ(A)

∑
x1..n∈A

1

µ(A)
µ(x1..n)log

ρ(x1..n)

µ(x1..n)

≥−µ(A)log
ρ(A)

µ(A)
≥−µ(A)logρ(A)− 1

2
. (2.62)

Moreover,

dn(µ,p(µ))=−
∑

x1..n∈Xn\V nµ

µ(x1..n)log
p(µ)(x1..n)

µ(x1..n)

−
∑

x1..n∈V nµ

µ(x1..n)log
p(µ)(x1..n)

µ(x1..n)
≥δn(µn)µ(Xn\V n

µ )−1/2,
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where in the inequality we have used (2.59) for the first summand and (2.62) for
the second. Thus,

µ(Xn\V n
µ )≤ dn(µ,p(µ))+1/2

δn(µ)
=o(1). (2.63)

From (2.60), (2.61) and (2.63) we conclude

µ(Xn\T nµ )≤µ(Xn\V n
µ )+µ(Xn\Un

µ )=o(1). (2.64)

Step 2n: a countable cover, time n. Fix an n∈N. Define mn
1 :=maxµ∈Cρ(T nµ )

(sinceXn are finite all suprema are reached). Find any µn1 such that ρn1 (T nµn1 )=mn
1

and let T n1 :=T nµn1 . For k>1, let mn
k := maxµ∈Cρ(T nµ \T nk−1). If mn

k >0, let µnk be
any µ ∈ C such that ρ(T nµnk\T

n
k−1) =mn

k , and let T nk := T nk−1∪T nµnk ; otherwise let
T nk :=T nk−1. Observe that (for each n) there is only a finite number of positive
mn
k , since the set Xn is finite; let Kn be the largest index k such that mn

k > 0.
Let

νn :=
Kn∑
k=1

wkp(µ
n
k). (2.65)

As a result of this construction, for every n∈N every k≤Kn and every x1..n∈T nk
using the definitions (2.60), (2.58) and (2.59) we obtain

νn(x1..n)≥wk
1

n
2−δn(µ)ρ(x1..n). (2.66)

Step 2: the resulting predictor. Finally, define

ν :=
1

2
γ+

1

2

∑
n∈N

wnνn, (2.67)

where γ is the i.i.d. measure with equal probabilities of all x∈X (that is, γ(x1..n)=

|X|−n for every n∈N and every x1..n∈Xn). We will show that ν predicts every
µ∈C+, and then in the end of the proof (Step r) we will show how to replace γ by
a combination of a countable set of elements of C (in fact, γ is just a regularizer
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which ensures that ν-probability of any word is never too close to 0).
Step 3: ν predicts every µ ∈ C+. Fix any µ ∈ C+. Introduce the param-

eters εnµ ∈ (0,1), n ∈ N, to be defined later, and let jnµ := 1/εnµ. Observe that
ρ(T nk \T nk−1)≥ρ(T nk+1\T nk ), for any k>1 and any n∈N, by definition of these sets.
Since the sets T nk \T nk−1, k∈N are disjoint, we obtain ρ(T nk \T nk−1)≤1/k. Hence,
ρ(T nµ \T nj )≤ εnµ for some j ≤ jnµ , since otherwise mn

j = maxµ∈Cρ(T nµ \T njnµ )>εnµ so
that ρ(T njnµ+1\T njnµ )>εnµ=1/jnµ , which is a contradiction. Thus,

ρ(T nµ \T njnµ )≤εnµ. (2.68)

We can upper-bound µ(T nµ \T njnµ ) as follows. First, observe that

dn(µ,ρ)=−
∑

x1..n∈Tnµ ∩Tnjnµ

µ(x1..n)log
ρ(x1..n)

µ(x1..n)

−
∑

x1..n∈Tnµ \Tnjnµ

µ(x1..n)log
ρ(x1..n)

µ(x1..n)

−
∑

x1..n∈Xn\Tnµ

µ(x1..n)log
ρ(x1..n)

µ(x1..n)

=I+II+III. (2.69)

Then, from (2.60) and (2.58) we get

I≥−logn. (2.70)

From (2.62) and (2.68) we get

II≥−µ(T nµ \T njnµ )logρ(T nµ \T njnµ )−1/2≥−µ(T nµ \T njnµ )logεnµ−1/2. (2.71)
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Furthermore,

III≥
∑

x1..n∈Xn\Tnµ

µ(x1..n)logµ(x1..n)

≥µ(Xn\T nµ )log
µ(Xn\T nµ )

|Xn\T nµ |
≥−1

2
−µ(Xn\T nµ )nlog|X|, (2.72)

where the first inequality is obvious, in the second inequality we have used the
fact that entropy is maximized when all events are equiprobable and in the third
one we used |Xn\T nµ | ≤ |X|n. Combining (2.69) with the bounds (2.70), (2.71)
and (2.72) we obtain

dn(µ,ρ)≥−logn−µ(T nµ \T njnµ )logεnµ−1−µ(Xn\T nµ )nlog|X|,

so that

µ(T nµ \T njnµ )≤ 1

−logεnµ

(
dn(µ,ρ)+logn+1+µ(Xn\T nµ )nlog|X|

)
. (2.73)

From the fact that dn(µ,ρ)=o(n) and (2.64) it follows that the term in brackets
is o(n), so that we can define the parameters εnµ in such a way that −logεnµ=o(n)

while at the same time the bound (2.73) gives µ(T nµ \T njnµ ) = o(1). Fix such a
choice of εnµ. Then, using (2.64), we conclude

µ(Xn\T njnµ )≤µ(Xn\T nµ )+µ(T nµ \T njnµ )=o(1). (2.74)

We proceed with the proof of dn(µ,ν)=o(n). For any x1..n∈T njnµ we have

ν(x1..n)≥ 1

2
wnνn(x1..n)≥ 1

2
wnwjnµ

1

n
2−δn(µ)ρ(x1..n)≥ wn

4n
(εnµ)22−δn(µ)ρ(x1..n),

(2.75)
where the first inequality follows from (2.67), the second from (2.66), and in
the third we have used wjnµ = 1/(jnµ)(jnµ +1) and jnµ = 1/εµn. Next we use the
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decomposition

dn(µ,ν)=−
∑

x1..n∈Tnjnµ

µ(x1..n)log
ν(x1..n)

µ(x1..n)
−

∑
x1..n∈Xn\Tn

jnµ

µ(x1..n)log
ν(x1..n)

µ(x1..n)
=I+II.

(2.76)
From (2.75) we find

I≤−log
(wn

4n
(εnµ)22−δn(µ)

)
−

∑
x1..n∈Tnjnµ

µ(x1..n)log
ρ(x1..n)

µ(x1..n)

=(o(n)−2logεnµ+δn(µ))+

dn(µ,ρ)+
∑

x1..n∈Xn\Tn
jnµ

µ(x1..n)log
ρ(x1..n)

µ(x1..n)


≤o(n)−

∑
x1..n∈Xn\Tn

jnµ

µ(x1..n)logµ(x1..n)

≤o(n)+µ(Xn\T njnµ )nlog|X|=o(n), (2.77)

where in the second inequality we have used −logεnµ = o(n), dn(µ,ρ) = o(n) and
δn(µ)=o(n), in the last inequality we have again used the fact that the entropy
is maximized when all events are equiprobable, while the last equality follows
from (2.74). Moreover, from (2.67) we find

II≤ log2−
∑

x1..n∈Xn\Tn
jnµ

µ(x1..n)log
γ(x1..n)

µ(x1..n)
≤1+nµ(Xn\T njnµ )log|X|=o(n), (2.78)

where in the last inequality we have used γ(x1..n) = |X|−n and µ(x1..n)≤1, and
the last equality follows from (2.74).

From (2.76), (2.77) and (2.78) we conclude 1
n
dn(ν,µ)→0.

Step r: the regularizer γ. It remains to show that the i.i.d. regularizer γ in the
definition of ν (2.67), can be replaced by a convex combination of a countably
many elements from C. This can be done exactly as in the corresponding step
(Step r) of the proof of Theorem 2.7 (Section 2.6.1).
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Chapter 3

Statistical analysis of stationary
ergodic time series [R2, R4, R5, R11]

Numerous statistical inference problems can be formulated in the following way:
given a sample x1,...,xn (where the variables xi are possibly multi-dimensional)
we need to decide whether the (unknown) distribution that generated this sample
belongs to a family of distributions H0 versus it belongs to a family H1. This
formulation encompasses a broad range of problems, that can roughly be grouped
into two categories: model verification and property testing. Model verification
problems include goodness-of-fit testing (the case when H0 consists of just one
element H0 ={ρ0}), and testing membership to various parametric families, e.g.,
to the set of all Markov processes. Property testing problems include testing for
homogeneity, component independence, and many others.

Most of the research on these and related problems, even in non-parametric
settings, is traditionally concentrated on studying independent and identically
distributed variables xi. Unlike on sequence prediction, the research on hypoth-
esis testing for general stationary ergodic processes is very scarce, and for many
problems it has still remained unclear whether they can be solved in this setting.
This is why in this chapter we concentrate on stationary ergodic time series, and
do not venture beyond this model. Restricting our considerations to the set of

80



stationary ergodic processes allows us to benefit from the structure imposed on
it by the distributional distance: the space of all stationary process is separable
with respect to it, and possesses numerous other useful properties.

The presented contribution is as follows. A new methodology for construct-
ing statistical inference procedures is proposed, which is based on estimating the
distributional distance. The developed method is used to construct consistent
algorithms for such problems as time series classification, change point estima-
tion and time series clustering, for real-valued data, under the only assumption
that the sequences under study are generated by stationary ergodic distribution.
Using this method, for discrete-valued data, a complete characterization (neces-
sary and sufficient conditions) of those hypotheses H0⊂E for which there exist
a consistent test against E\H0 is proposed. Some generalizations of this results
(e.g., to arbitrary families H0,H1⊂E) are also considered.

In addition, it is shown that there is no consistent test for homogeneity if
the only assumption on the data is that it is stationary ergodic, and even if
one makes a slightly stronger assumption that the distributions are B-processes.
This result (for stationary ergodic data) has been claimed in [69]; however, what
is really proven in that work is only that there is no consistent estimate of a
certain process distance (d̄-distance) for stationary ergodic processes; thus, the
statement about homogeneity testing was only a conjecture. A proof of a stronger
version (for B-processes) of this conjecture is presented in this chapter.

The rest of this chapter is organized as follows. Section 3.1 introduces ad-
ditional definitions and results that we need, including the definition of dis-
tributional distance. Section 3.2 presents the proposed approach to statistical
inference, which is based on empirical estimates of the distributional distance.
This approach is used to obtain consistent goodness-of-fit tests, as well as change
point estimates and a method for time series classification. All these algorithms
are very simple and serve as an illustration of the proposed approach; at the
same time, these results are considerably more general than those available be-
fore. Section 3.3 presents the criterion for the existence of a consistent test for
H0⊂E against E\H0, and some generalizations. Section 3.4 further extends the
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results of Section 3.2 to obtain a consistent algorithm for time-series cluster-
ing. The computational complexity of the proposed algorithm is also analyzed.
Finally, Section 3.5 shows that there is no asymptotically consistent test for
homogeneity for B-processes (and hence for stationary ergodic processes).

3.1 Preliminaries

We are considering (stationary ergodic) processes with the alphabet A=R. The
generalization to A=Rd is straightforward; moreover, the results can be extended
to the case when A is a complete separable metric space. For each k∈N, let Bk

be the set of all cylinders of the form A1×···×Ak where Ai⊂A are intervals with
rational endpoints. Let B=∪∞k=1B

k; since this set is countable we can introduce
an enumeration B= {Bi : i∈N}. The set {Bi×A∞ : i∈N} generates the Borel
σ-algebra on R∞=A∞. For a set B∈B let |B| be the index k of the set Bk that
B comes from: |B|=k :B∈Bk.

For a sequence X ∈An and a set B ∈B denote ν(X,B) the frequency with
which the sequence X falls in the set B

ν(X,B) :=

{
1

n−|B|+1

∑n−|B|+1
i=1 I{(Xi,...,Xi+|B|−1)∈B} if n≥|B|,

0 otherwise
(3.1)

where X=(X1,...,Xn). For example,

ν
(
(0.5,1.5,1.2,1.4,2.1),([1.0,2.0]×[1.0,2.0])

)
=1/2.

As before, we use the symbol S for the set of all stationary processes on A∞.
A stationary process ρ is called (stationary) ergodic if the frequency of occurrence
of each word B in a sequence X1,X2,... generated by ρ tends to its a priori (or
limiting) probability a.s.: ρ(limn→∞ν(X1..n,B) = ρ(X1..|B| =B)) = 1. By virtue
of the ergodic theorem (e.g. [10]), this definition can be shown to be equivalent
to the standard definition of stationary ergodic processes (every shift-invariant
set has measure 0 or 1; see e.g. [21]). Denote E the set of all stationary ergodic
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processes.

Definition 3.1 (distributional distance). The distributional distance is defined
for a pair of processes ρ1,ρ2 as follows [36]:

d(ρ1,ρ2)=
∞∑
i=1

wi|ρ1(Bi)−ρ2(Bi)|, (3.2)

where wi are summable positive real weights (e.g., wk=2−k).

It is easy to see that d is a metric. Equipped with this metric, the space of all
stochastic processes is separable and complete; moreover, it is a compact. The
set of stationary processes S is convex closed subset of the space of all stochas-
tic processes (hence a compact too). The set of all finite-memory stationary
distributions is dense in S. (Taking only those that have rational transition
probabilities we obtain a countable dense subset of S.) The set E is not convex
(a mixture of stationary ergodic distributions is always stationary but never er-
godic) and is not closed (its closure is S). We refer to [36] for more details and
proofs of these facts.

When talking about closed and open subsets of S we assume the topology
of d.

Definition 3.2 (empirical distributional distance). For X,Y ∈A∗, define empir-
ical distributional distance d̂(X,Y ) as

d̂(X,Y ) :=
∞∑
i=1

wi|ν(X,Bi)−ν(Y,Bi)|. (3.3)

Similarly, we can define the empirical distance when only one of the process
measures is unknown:

d̂(X,ρ) :=
∞∑
i=1

wi|ν(X,Bi)−ρ(Bi)|, (3.4)

where ρ∈E and X∈A∗.
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The following lemma will play a key role in establishing the main results.

Lemma 3.3. Let two samples X= (X1,...,Xk) and Y = (Y1,...,Ym) be generated
by stationary ergodic processes ρX and ρY respectively. Then

(i) limk,m→∞d̂(X,Y )=d(ρX ,ρY ) a.s.

(ii) limk→∞d̂(X,ρY )=d(ρX ,ρY ) a.s.

Proof. For any ε>0 we can find such an index J that
∑∞

i=Jwi<ε/2. Moreover,
for each j we have ν((X1,...,Xk),Bj)→ρX(Bj) a.s., so that

|ν((X1,...,Xk),Bj)−ρ(Bj)|<ε/(4Jwj)

from some step k on; define Kj := k. Let K := maxj<JKj (K depends on the
realization X1,X2,... ). Define analogously M for the sequence (Y1,...,Ym,... ).
Thus for k>K and m>M we have

|d̂(X,Y )−d(ρX ,ρY )|=∣∣∣∣∣
∞∑
i=1

wi
(
|ν(X,Bi)−ν(Y,Bi)|−|ρX(Bi)−ρY (Bi)|

)∣∣∣∣∣
≤
∞∑
i=1

wi
(
|ν(X,Bi)−ρX(Bi)|+|ν(Y,Bi)−ρY (Bi)|

)
≤

J∑
i=1

wi
(
|ν(X,Bi)−ρX(Bi)|+|ν(Y,Bi)−ρY (Bi)|

)
+ε/2

≤
J∑
i=1

wi(ε/(4Jwi)+ε/(4Jwi))+ε/2=ε,

which proves the first statement. The second statement can be proven analo-
gously.

Considering the Borel (with respect to the metric d) sigma-algebra FS on the
set S, we obtain a standard probability space (S,FS). An important tool that will
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be used in the analysis is ergodic decomposition of stationary processes (see
e.g. [36, 10]): any stationary process can be expressed as a mixture of stationary
ergodic processes. More formally, for any ρ∈S there is a measure Wρ on (S,FS),
such that

Wρ(E)=1, (3.5)

and ρ(B)=
∫
dWρ(µ)µ(B), for any B∈FA∞ .

3.2 Statistical analysis based on estimates of dis-

tributional distance [R4]

In this section we present our approach to the problem of statistical analysis
of time series, when nothing is known about the underlying process generating
the data, except that it is stationary ergodic. There is a vast literature on time
series analysis under various parametric assumptions, and also under such non-
parametric assumptions as that the processes is finite-memory or has certain
mixing rates. While under these settings most of the problems of statistical
analysis are clearly solvable and efficient algorithms exist, in the general setting
of stationary ergodic processes it is far less clear what can be done in principle,
which problems of statistical analysis admit a solution and which do not. In this
chapter we propose a method of statistical analysis of time series, that allows us
to demonstrate that some classical statistical problems indeed admit a solution
under the only assumption that the data is stationary ergodic, whereas before
solutions only for more restricted cases were known. The solutions are always
constructive, that is, we present asymptotically accurate algorithms for each of
the considered problems. All the algorithms are based on empirical estimates of
distributional distance, which is in the core of the suggested approach. We sug-
gest that the proposed approach can be applied to other problems of statistical
analysis of time series, with the view of establishing principled positive results,
leaving the task of finding optimal algorithms for each particular problem as a
topic for further research.

85



Here we concentrate on the following three conceptually simple problems:
goodness-of-fit (or identity) testing, process classification, and the change point
problem. A somewhat more technical problem of time-series clustering will be
considered in Section 3.4.
Identity testing. The first problem is the following problem of hypothesis test-
ing. A stationary ergodic process distribution ρ is known theoretically. Given a
data sample, it is required to test whether it was generated by ρ, versus it was
generated by any other stationary ergodic distribution that is different from ρ

(goodness-of-fit, or identity testing). The case of i.i.d. or finite-memory processes
was widely studied (see e.g. [21]); in particular, when ρ has a finite memory [81]
proposes a test against any stationary ergodic alternative: a test that can be
based on an arbitrary universal code. It was noted in [82] that an asymptoti-
cally accurate test for the case of stationary ergodic processes over finite alpha-
bet exists (but no test was proposed). Here we propose a concrete and simple
asymptotically accurate goodness-of-fit test, which demonstrates the proposed
approach: to use empirical distributional distance for hypotheses testing. By
asymptotically accurate test we mean the following. First, the Type I error of
the test (or its size) is fixed and is given as a parameter to the test. That is,
given any α> 0 as an input, under H0 (that is, if the data sample was indeed
generated by ρ) the probability that the test says “H1” is not greater than α.
Second, under any hypothesis in H1 (that is, if the distribution generating the
data is different from ρ), the test will say “H0” not more than a finite number
of times, with probability 1. In other words, the Type I error of the test is fixed
and the Type II error can be made not more than a finite number of times,
as the data sample increases, with probability 1 under any stationary ergodic
alternative.
Process classification. In the next problem that we consider, we again have to
decide whether a data sample was generated by a process satisfying a hypothesis
H0 or a hypothesis H1. However, here H0 and H1 are not known theoretically,
but are represented by two additional data samples. More precisely, the probelm
is that of process classification, which can be formulated as follows. We are given
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three samples X = (X1,...,Xk), Y = (Y1,...,Ym) and Z = (Z1,...,Zn) generated by
stationary ergodic processes with distributions ρX , ρY and ρZ . It is known that
ρX 6= ρY but either ρZ = ρX or ρZ = ρY . It is required to test which one is the
case. That is, we have to decide whether the sample Z was generated by the
same process as the sample X or by the same process as the sample Y . This
problem for the case of dependent time series was considered for example in
[37], where a solution is presented under the finite-memory assumption. It is
closely related to many important problems in statistics and application areas,
such as pattern recognition. Apparently, no asymptotically accurate procedure
for process classification has been known so far for the general case of stationary
ergodic processes. Here we propose a test that converges almost surely to the
correct answer. In other words, the test makes only a finite number of errors
with probability 1, with respect to any stationary ergodic processes generating
the data. Unlike in the previous problem, here we do not explicitly distinguish
between Type I and Type II error, since the hypotheses are by nature symmetric:
H0 is “ρZ =ρX” and H1 is “ρZ =ρY ”.
Change point estimation. Finally, we consider the change point problem. It
is another classical problem, with vast literature on both parametric (see e.g.
[7]) and non-parametric (see e.g. [15]) methods for solving it. In this section
we address the case where the data is dependent, its form and the structure
of dependence is unknown, and, importantly, marginal distributions before and
after the change may be the same. We consider the following (off-line) setting
of the problem: a (real-valued) sample Z1,...,Zn is given, where Z1,...,Zk are
generated according to some distribution ρX and Zk+1,...,Zn are generated ac-
cording to some distribution ρY which is different from ρX . It is known that the
distributions ρX and ρY are stationary ergodic, but nothing else is known about
them.

Most literature on change point problem for dependent time series assumes
that the marginal distributions before and after the change point are different,
and often also make explicit restrictions on the dependence, such as requirements
on mixing rates. Nonparametric methods used in these cases are typically based
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on Kolmogorov-Smirnov statistic, Cramer-von Mises statistic, or generalizations
thereof [15, 16, 35]. The main difference with our results is that we do not
assume that the single-dimensional marginals (or finite-dimensional marginals
of any given fixed size) are different, and do not make any assumptions on the
structure of dependence. The only assumption is that the (unknown) process
distributions before and after the change point are stationary ergodic.
Methodology. All the tests that we construct are based on empirical estimates
of the so-called distributional distance. For two processes ρ1,ρ2 a distributional
distance is defined as

∑∞
k=1wk|ρ1(Bk)−ρ2(Bk)|, where wk are positive summable

real weights, e.g. wk=2−k and Bk range over a countable field that generates the
sigma-algebra of the underlying probability space. For example, if we are talking
about finite-alphabet processes with the binary alphabet A= {0,1}, Bk would
range over the set A∗ = ∪k∈NAk; that is, over all tuples 0,00,01,10,000,001,... ;
therefore, the distributional distance in this case is the weighted sum of differ-
ences of probabilities of all possible tuples. In this section we consider real-valued
processes, A=R, so Bk can be taken to range over all intervals with rational
endpoints, all pairs of such intervals, triples, etc.

Although distributional distance is a natural concept that, for stochastic
processes, has been studied for a while [36], its empirical estimates have not,
to our knowledge, been used for statistical analysis of time series. We argue
that this distance is rather natural for this kind of problems, first of all, since
it can be consistently estimated (unlike, for example, d̄ distance, which cannot
[69] be consistently estimated for the general case of stationary ergodic pro-
cesses). Secondly, it is always bounded, unlike (empirical) KL divergence, which
is often used for statistical inference for time series (e.g. [21, 81, 2, 20] and
others). Other approaches to statistical analysis of stationary dependent time
series include the use of (universal) codes [50, 81, 80]. Here we first show that
distributional distance between stationary ergodic processes can be consistently
estimated based on sampling, and then apply it to construct a consistent test
for the three problems of statistical analysis described above.

Although empirical estimates of the distributional distance involve taking an
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infinite sum, in practice it is obvious that only a finite number of summands
has to be calculated. This is due to the fact that empirical estimates have to
be compared to each other or to theoretically known probabilities, and since
the (bounded) summands have (exponentially) decreasing weights, the result
of the comparison is known after only finitely many evaluations (see a more
formal discussion on this in Section 3.4 on time-series clustering). Therefore,
the algorithms presented can be applied in practice. On the other hand, the
main value of the results is in the demonstration of what is possible in principle;
finding practically efficient procedures for each of the considered problems is an
interestring problem for further research.

3.2.1 Goodness-of-fit

For a given stationary ergodic process measure ρ and a sample X=(X1,...,Xn)

we wish to test the hypothesis H0 that the sample was generated by ρ versus H1

that it was generated by a stationary ergodic distribution that is different from
ρ. Thus, H0 ={ρ} and H1 =E\H0.

Define the set Dn
δ as the set of all samples of length n that are at least δ-far

from ρ in empirical distributional distance:

Dn
δ :={X∈An : d̂(X,ρ)≥δ}.

For each n and each given confidence level α define the critical region Cn
α of the

test as Cn
α :=Dn

γ where
γ :=inf{δ :ρ(Dn

δ )≤α}.

The test rejects H0 at confidence level α if (X1,...,Xn)∈Cn
α and accepts it oth-

erwise. In words, for each sequence we measure the distance between the em-
pirical probabilities (frequencies) and the measure ρ (that is, the theoretical ρ-
probabilities); we then take a largest ball (with respect to this distance) around
ρ that has ρ-probability not greater than 1−α. The test rejects all sequences
outside this ball.
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Definition 3.4 (Goodness-of-fit test). For each n∈N and α∈(0,1) the goodness-
of-fit test Gα

n :An→{0,1} is defined as

Gα
n(X1,...,Xn) :=

{
1 if (X1,...,Xn)∈Cn

α ,

0 otherwise.

Theorem 3.5. The test Gα
n has the following properties.

(i) For every α∈(0,1) and every n∈N the Type I error of the test is not greater
than α: ρ(Gα

n=1)≤α.

(ii) For every α ∈ (0,1) the Type II error goes to 0 almost surely: for every
ρ′ 6=ρ we have limn→∞G

α
n=1 with ρ′ probability 1.

Note that using an appropriate randomization in the definition of Cn
α we can

make the Type I error exactly α.

Proof. The first statement holds by construction. To prove the second statement,
let the sample X be generated by ρ′ ∈ E, ρ′ 6= ρ, and define δ = d(ρ,ρ′)/2. By
Lemma 3.3 we have ρ(Dn

δ )→0, so that ρ(Dn
δ )<α from some n on; denote it n1.

Thus, for n>n1 we have Dn
δ ⊂Cn

α . At the same time, by Lemma 3.3 we have
d̂(X,ρ)>δ from some n on, which we denote n2(X), with ρ′-probability 1. So, for
n>max{n1,n2(X)} we have X∈Dn

δ ⊂Cn
α , which proves the statement (ii).

3.2.2 Process classification

Let there be given three samples X = (X1,...,Xk), Y = (Y1,...,Ym) and Z =

(Z1,...,Zn). Each sample is generated by a stationary ergodic process ρX , ρY
and ρZ respectively. Moreover, it is known that either ρZ =ρX or ρZ =ρY , but
ρX 6=ρY . We wish to construct a test that, based on the finite samples X,Y and
Z will tell whether ρZ =ρX or ρZ =ρY .

The test chooses the sample X or Y according to whichever is closer to Z
in d̂. That is, we define the test G(X,Y,Z) as follows. If d̂(X,Z)≤ d̂(Y,Z) then
the test says that the sample Z is generated by the same process as the sample
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X, otherwise it says that the sample Z is generated by the same process as the
sample Y.

Definition 3.6 (Process classifier). Define the classifier L :A∗×A∗×A∗→{1,2}
as follows

L(X,Y,Z) :=

{
1 if d̂(X,Z)≤ d̂(Y,Z)

2 otherwise,

for X,Y,Z∈A∗.

Theorem 3.7. The test L(X,Y,Z) makes only a finite number of errors when
|X|,|Y | and |Z| go to infinity, with probability 1: if ρX =ρZ then

L(X,Y,Z)=1

from some |X|,|Y |,|Z| on with probability 1; otherwise

L(X,Y,Z)=2

from some |X|,|Y |,|Z| on with probability 1.

Proof. From the fact that d is a metric and from Lemma 3.3 we conclude that
d̂(X,Z)→ 0 (with probability 1) if and only if ρX = ρZ . So, if ρX = ρZ then by
assumption ρY 6=ρZ and d̂(X,Z)→0 a.s. while

d̂(Y,Z)→d(ρY ,ρZ) 6=0.

Thus in this case d̂(Y,Z)>d̂(X,Z) from some |X|,|Y |,|Z| on with probability 1,
from which moment we have L(X,Y,Z)=1. The opposite case is analogous.

3.2.3 Change point problem

The sample Z = (Z1,...,Zn) consists of two concatenated parts X = (X1,...,Xk)

and Y =(Y1,...,Ym), where m=n−k, so that Zi=Xi for 1≤i≤k and Zk+j=Yj for
1≤ j≤m. The samples X and Y are generated independently by two different
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stationary ergodic processes with alphabet A = R. The distributions of the
processes are unknown. The value k is called the change point. It is assumed
that k is linear in n; more precisely, αn<k<βn for some 0<α≤β<1 from some
n on.

It is required to estimate the change point k based on the sample Z.
For each t, 1≤ t≤n, denote U t the sample (Z1,...,Zt) consisting of the first t

elements of the sample Z, and denote V t the remainder (Zt+1,...,Zn).

Definition 3.8 (Change point estimator). Define the change point estimate
k̂ :A∗→N as follows:

k̂(X1,...,Xn) :=argmaxt∈[αn,n−βn]d̂(U t,V t).

The following theorem establishes asymptotic consistency of this estimator.

Theorem 3.9. For the estimate k̂ of the change point k we have

|k̂−k|=o(n) a.s.

where n is the size of the sample, and when k,n−k→∞ in such a way that
α< k

n
<β for some α,β∈(0,1) from some n on.

The proof is deferred to Section 3.6.1.

3.3 Characterizing families of stationary processes

for which consistent tests exist [R2]

Given a sample X1,...,Xn, where, for the sake of this section, Xi are from a
finite alphabet A, we wish to decide whether it was generated by a distribution
belonging to a family H0, versus it was generated by a distribution belonging
to a family H1. The only assumption we are willing to make about the the
distribution generating the sample is that it is stationary ergodic.
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A test is a function that takes a sample and gives a binary (possibly incorrect)
answer: the sample was generated by a distribution from H0 or from H1. An
answer i∈{0,1} is correct if the sample is generated by a distribution that belongs
to Hi. Here we are concerned with characterizing those pairs of H0 and H1 for
which consistent tests exist. There are several ways of formalizing what is a
consistent test, from which we consider two. For these two notions of consistency
we find some necessary and some sufficient conditions for the existence of a
consistent test, expressed in topological terms. For one notion of consistency
(asymmetric testing) considered, the necessary and sufficient conditions coincide
when H1 is the complement of H0, thereby providing a complete characterization
of the hypotheses for which consistent tests exist.

Examples. Before introducing the definitions of consistency, let us give some
examples motivating the general problem in question. Most of these examples are
classical problems studied in mathematical statistics and related fields, mostly for
i.i.d. data, with much literature devoted to each of them. (An incomplete survey
of related work for non-i.i.d. data is given further in this section.) The most basic
case of the hypothesis testing problem is testing a simple hypothesis H0 ={ρ0}
versus a simple hypothesis H1 ={ρ1}, where ρ0 and ρ1 are two stationary ergodic
process distributions (which are assumed completely known theoretically). A
more complex but more realistic problem is when only one of the hypothesis is
simple, H0 ={ρ0} but the alternative is general, for example H1 is the set of all
stationary ergodic processes that are different from ρ0. This is the goodness-of-fit
problem that we have considered in Section 3.2. One may also consider variants
in which the alternative is the set of all stationary ergodic processes that differ
from ρ0 by at least ε in some distance. The described hypotheses are variants
of the so-called goodness-of-fit, or identity testing problem. Another class of
hypothesis testing problems is presented by the problem of model verification.
Suppose we have some relatively simple (possibly parametric) set of assumptions,
and we wish to test whether the process generating the given sample satisfies this
assumptions. As an example, H0 can be the set of all k-order Markov processes
(fixed k ∈N) and H1 is the set of all stationary ergodic processes that do not
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belong to H0; one may also wish to consider more restrictive alternatives, for
example H1 is the set of all k′-order Markov processes where k′>k. Of course,
instead of Markov processes one can consider other models, e.g. Hidden Markov
processes. A similar problem is that of testing that the process has entropy less
than some given ε versus its entropy exceeds ε, or versus its entropy is greater
than ε+δ for some positive δ.

Yet another type of hypothesis testing problems concerns property testing.
Suppose we are given two samples, generated independently of each other by
stationary ergodic distributions, and we wish to test the hypothesis that they
are independent versus they are not independent. Or, that they are generated
by the same process versus they are generated by different processes.

In all the considered cases, when the hypothesis testing problem turns out
to be too difficult (i.e. there is no consistent test for the chosen notion of con-
sistency) for the case of stationary ergodic processes, one may wish to restrict
either H0, H1 or both H0 and H1 to some smaller class of processes. Thus,
one may wish to test the hypothesis of independence when, for example, both
processes are known to have finite memory, or to have certain mixing rates.

All the problems described above are special cases of the following general
formulation: given two sets H0 and H1 which are contained in the set of all sta-
tionary ergodic process distributions, and given a sample generated by a process
that comes from either H0 or H1, we would like have a test that tells us which
one is the case: H0 or H1. The goal of this section is to characterize those pairs
of H0,H1 for which a consistent test exists. Ideally, the characterization should
be complete, that is, in the form of necessary and sufficient conditions, that can
be verified for at least most of the problems outlined above. This goal is partially
achieved: for two (rather natural) notions of consistency, we find some neces-
sary and some sufficient conditions, that, for one of these notions of consistency,
coincide in the case when H1 is the complement of H0. We show that these con-
ditions are indeed relatively easy to verify for some of the considered hypotheses,
such as identity testing, model verification and testing independence.

In this section we will use the following notions of consistency of tests (see
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Section 3.3.1 for formal definitions). The first one is the same that was introduced
in Section 3.2: the Type I error (level) is fixed and the probability of Type II error
is required to go to 0 as the sample size increases. To distinguish it from other
notions of consistency that we will consider, we call it asymmetric consistency.

The second notion of consistency that we will consider is uniform consistency.
For two hypothesis H0 and H1, a test is called uniformly consistent, if for any
ε> 0 there is a sample size n such that the probability of error on a sample of
size larger than n is not greater than ε if any distribution from H0∪H1 is chosen
to generate the sample. Thus, a uniformly consistent test provides performance
guarantees for finite sample sizes.
Prior work. There is a vast body of literature on hypothesis testing for i.i.d.
(real- or discrete-valued) data (see e.g. [58, 49]). In the context of discrete-
valued i.i.d. data, the necessary and sufficient conditions for the two types of
consistency introduced are rather simple. There is an asymmetrically consistent
test if and only if the closure of H0 does not intersect H1, and there is a uniformly
consistent test if and only if the closures of H0 and H1 are disjoint, where the
topology is that of the parameter space (probabilities of each symbol), see e.g.
[19]. Some extensions to Markov chains are also possible [9, 6].

There is, however, much less literature on hypothesis testing beyond i.i.d.
or parametric models, while the question of determining whether a consistent
test exists, for different notions of consistency and different hypotheses, is much
less trivial. For a weaker notion of consistency, namely, requiring that the test
should stabilize on the correct answer for a.e. realization of the process (under
either H0 or H1), [50] constructs a consistent test for so-called constrained finite-
state model classes (including finite-state Markov and hidden Markov processes),
against the general alternative of stationary ergodic processes. For the same no-
tion of consistency, [65] gives sufficient conditions on two hypotheses H0 and H1

that consist of stationary ergodic real-valued processes, under which a consistent
test exists, extending the results of [25] for i.i.d. data. The latter condition is
that H0 and H1 are contained in disjoint Fσ sets (countable unions of closed
sets), with respect to the topology of weak convergence. In [62] some results
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are presented on testing the hypothesis that the process has a finite memory,
and some related problems. Asymmetrically consistent tests for some specific
hypotheses, but under the general alternative of stationary ergodic processes,
have been proposed in Section 3.2 above (see also references therein).
The results. Here we obtain some topological characterizations of the hy-
potheses for which consistent tests exist, for the case of stationary ergodic dis-
tributions. The obtained characterizations are rather similar to those mentioned
above for the case of i.i.d. data, but are with respect to the topology of distribu-
tional distance. The fact that necessary and sufficient conditions are obtained
for one of the notions of consistency, indicates that this topology is the right one
to consider.

The tests that we construct are based on empirical estimates of distribu-
tional distance. In particular, the uniform test ϕH0,H1 outputs 0 if the given
sample is closer to the (closure of) H0 than to the (closure of) H1, and outputs
1 otherwise. The asymmetric test ψαH0,H1

, for a given level α, takes the smallest
ε-neighbourhood of the closure of H0 that has probability not less than 1−α
with respect to any distribution in it, and outputs 0 if the sample falls into this
neighbourhood, and 1 otherwise.

This is a generalization of the goodness-of-fit procedure introduced in Sec-
tion 3.2.

For the case of testing H0 against its complement to the set E of all stationary
ergodic processes, we obtain the following necessary and sufficient condition
(formalized in the next section).
Theorem. There exists an asymmetrically consistent test for H0 against H1 :=

E\H0 if and only if H1 has probability 0 with respect to ergodic decomposition
of every distribution from the closure of H0. In this case, the test ψαH0,H1

is
asymmetrically consistent too.

For the general case, as well as for the case of uniform consistency, we obtain
some necessary and some sufficient conditions, in the same terms. The main
results are illustrated with derivations of several known and some new results
for specific hypotheses. In particular, we show that any set of processes which
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is continuously parametrized by a compact set of parameters, and is closed un-
der taking ergodic decompositions, can be tested with asymmetric consistency
against its complement to the set of all stationary ergodic processes. Such para-
metric families include k-order Markov processes and k-state Hidden Markov
processes.

3.3.1 Definitions: consistency of tests

A test is a function ϕ :A∗→{0,1} that takes a sample and outputs a binary
answer, where the answer i is interpreted as “the sample was generated by a
distribution that belongs to Hi”. The answer i is correct if the sample was
indeed generated by a distribution from Hi, otherwise we say that the test made
an error. A test ϕ makes the Type I error if it says 1 while H0 is true, and it
makes Type II error if it says 0 while H1 is true.

Call a family of tests ψα,α∈ (0,1) asymmetrically consistent if: (i) The
probability of Type I error is always bounded by α: ρ{X∈An :ψα(X)=1}≤α for
every ρ∈H0, every n∈N and every α∈(0,1), and (ii) Type II error is made not
more than a finite number of times with probability 1: ρ(limn→∞ψ

α(X1..n)=1)=1

for every ρ∈H1 and every α∈ (0,1). (Abusing the notation, we will sometimes
call families of tests ψα,α∈(0,1) simply tests.)

A test ϕ is called uniformly consistent if for every α there is an nα ∈N
such that for every n≥nα the probability of error on a sample of size n is less
than α: ρ(X∈An :ϕ(X)= i)<α for every ρ∈H1−i and every i∈{0,1}.

3.3.2 Topological characterizations

The tests presented below are based on empirical estimates of the distributional
distance d:

d̂(X1..n,ρ)=
∞∑
i=1

wi|ν(X1..n,Bi)−ρ(Bi)|,

where n ∈ N, ρ ∈ S, X1..n ∈ An. That is, d̂(X1..n,ρ) measures the discrepancy
between empirically estimated and theoretical probabilities. For a sample X1..n∈
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An and a hypothesis H⊂E define

d̂(X1..n,H)= inf
ρ∈H

d̂(X1..n,ρ).

For H⊂S, denote clH the closure of H (with respect to the topology of d).
For H0,H1⊂S, the uniform test ϕH0,H1 is constructed as follows. For each

n∈N let

ϕH0,H1(X1..n) :=

{
0 if d̂(X1..n,clH0∩E)<d̂(X1..n,clH1∩E),

1 otherwise.
(3.6)

Since the set S is a complete separable metric space, it is easy to see that the
function ϕH0,H1(X1..n) is measurable provided clH0 is measurable.

Theorem 3.10 (uniform testing). Let H0,H1 be measurable subsets of E. If
Wρ(Hi) = 1 for every ρ ∈ clHi then the test ϕH0,H1 is uniformly consistent.
Conversely, if there exists a uniformly consistent test for H0 against H1 then
Wρ(H1−i)=0 for any ρ∈clHi.

The proofs are deferred to section 3.6.
Construct the asymmetric test ψαH0,H1

,α∈(0,1) as follows. For each n∈N,
δ>0 and H⊂E define the neighbourhood bnδ (H) of n-tuples around H as

bnδ (H) :={X∈An : d̂(X,H)≤δ}.

Moreover, let
γn(H,θ) :=inf{δ : inf

ρ∈H
ρ(bnδ (H))≥θ}

be the smallest radius of a neighbourhood around H that has probability not
less than θ with respect to any process in H, and let Cn(H,θ) := bnγn(H,θ)(H) be
a neighbourhood of this radius. Define

ψαH0,H1
(X1..n) :=

{
0 if X1..n∈Cn(clH0∩E,1−α),

1 otherwise.
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Again, it is easy to see that the function ϕH0,H1(X1..n) is measurable, since the
set S is separable. We will often omit the subscript H0,H1 from ψαH0,H1

when it
can cause no confusion.

Theorem 3.11. Let H0,H1 be measurable subsets of E. If Wρ(H0)=1 for every
ρ∈ clH0 then the test ψαH0,H1

is asymmetrically consistent. Conversely, if there
is an asymmetrically consistent test for H0 against H1 then Wρ(H1)=0 for any
ρ∈clH0.

For the case when H1 is the complement of H0 the necessary and sufficient
conditions of Theorem 3.11 coincide and give the following criterion.

Corollary 3.12. Let H0⊂E be measurable and let H1 =E\H0. The following
statements are equivalent:

(i) There exists an asymmetrically consistent test for H0 against H1.

(ii) The test ψαH0,H1
is asymmetrically consistent.

(iii) The set H1 has probability 0 with respect to ergodic decomposition of every
ρ in the closure of H0: Wρ(H1)=0 for each ρ∈clH0.

3.3.3 Examples

Theorems 3.11 and 3.10 can be used to check whether a consistent test exists
for such problems as identity, independence, estimating the order of a (Hidden)
Markov model, bounding entropy, bounding distance, uniformity, monotonicity,
etc. Some of these examples are considered in this section.
Example 1: Simple hypotheses, Identity. First of all, it is obvious that sets
that consisit of just one or finitely many stationary ergodic processes are closed
and closed under ergodic decompositions; therefore, for any pair of disjoint sets
of this type, there exists a uniformly consistent test. (In particular, there is a
uniformly consistent test for H0 = {ρ0} against H1 = {ρ1}.) A more interesting
case is identity testing, or goodness-of-fit, introduced in Section 3.2: the problem
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here consists in testing whether a distribution generating the sample obeys a
certain given law, versus it does not. Let ρ∈E, H0 ={ρ} and H1 =E\H0. Then
there is an asymmetrically consistent test for H0 against H1. The conditions of
Theorem 3.12 are easily verified for this case, so that we recover Theorem 3.5.

As far as uniform testing is concerned, it is, first of all, clear that for any ρ0

there is no uniformly consistent test for identity. More generally, for any non-
empty H0 there is no uniformly consistent test for H0 against E\H0 provided the
latter complement is also non-empty. Indeed, this follows from Theorem 3.10
since in these cases the closures of H0 and H1 are not disjoint. One might suggest
at this point that a uniformly consistent test exists if we restrict H1 to those
processes that are sufficiently far from ρ0. However, this is not true. We can
prove an even stronger negative result.

Proposition 3.13. Let ρ,ν ∈ E, ρ 6= ν and let ε > 0. There is no uniformly
consistent test for H0 ={ρ} against H1 ={ν ′∈E :d(ν ′,ν)≤ε}.

The proof of the proposition is deferred to the Section 3.6.2. What it means
is that, while distributional distance is well suited for characterizing those hy-
potheses for which consistent test exist, it is not suited for formulating the actual
hypotheses. Apparently a stronger distance is needed for the latter.

Example 2: Markov and Hidden Markov processes: bounding the or-
der. For any k, there is an asymmetrically consistent test of the hypothesis
Mk= “the process is Markov of order not greater than k” against E\Mk. For any
k, there is an asymmetrically consistent test of HMk=“the process is given by
a Hidden Markov process with not more than k states” against H1 =E\HMk.
Indeed, in both cases (k-order Markov, Hidden Markov with not more than k

states), the hypothesis H0 is a parametric family, with a compact set of parame-
ters, and a continuous function mapping parameters to processes (that is, to the
space S). Weierstrass theorem then implies that the image of such a compact
parameter set is closed (and compact). Moreover, in both cases H0 is closed
under taking ergodic decompositions. Thus, by Theorem 3.11, there exists an
asymmetrically consistent test.
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The problem of estimating the order of a (hidden) Markov process, based
on a sample from it, was addressed in a number of works. In the contest of
hypothesis testing, asymmetrically consistent tests for Mk against Mt with t>k
were given in [6], see also [9]. The existence of non-uniformly consistent tests (a
notion weaker than that of asymmetric consistency) forMk against E\Mk, and of
HMk against E\HMk, was established in [50]. Asymmetrically consistent tests
for Mk against E\Mk were obtained in [80], while for the case of asymmetric
testing for HMk against E\HMk the positive result above is apparently new.

Example 3: Smooth parametric families. From the discussion in the pre-
vious example we can see that the following generalization is valid. Let H0⊂S

be a set of processes that is continuously parametrized by a compact set of pa-
rameters. If H0 is closed under taking ergodic decompositions, then there is an
asymmetrically consistent test for H0 against E\H0. In particular, this strength-
ens the mentioned result of [50], since a stronger notion of consistency is used,
as well as a more general class of parametric families is considered.

Clearly, a similar statement can be derived for uniform testing: given two
disjoint sets H0 and H1 each of which is continuously parametrized by a compact
set of parameters and is closed under taking ergodic decompositions, there exists
a uniformly consistent test of H0 against H1.

Example 4: Independence. Suppose that A = A1×A2, so that a sample
X1..n consists of two processes X1

1..n and X2
1..n, which we call features. The

hypothesis of independence is that the first feature is independent from the
second: ρ(X1

1..t ∈ T1,X
2
1..t ∈ T2) = ρ(X1

1..t ∈ T1)ρ(X2
1..t ∈ T2) for any (T1,T2) ∈An

and any n ∈N. Let I be the set of all stationary ergodic processes satisfying
this property. It is easy to see that Theorem 3.11 implies, that there exists
an asymmetrically consistent test for I∩Mk against E\I, for any given k ∈N.
Analogously, if we confine H0 to Hidden Markov processes of a given order,
then asymmetric testing is possible. That is, there exists an an asymmetrically
consistent test for I∩HMk against E\I, for any given k∈N. As far as uniform
testing is concerned, positive results can be obtained if we restrict both H0

and H1 to the corresponding subset of some set continuously parametrized by
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a compact set of parameters, such as the sets of (Hidden) Markov processes of
given order.

The question of whether I can be tested against E\I is more difficult. It is
clear that the closure of I only contains processes with independent features.
It is not clear whether any of the limiting points of I has ergodic components
whose features are not independent. If there are none, this would prove that
there exists an asymmetrically consistent test for independence, for the class of
stationary ergodic process.

3.4 Clustering time series [R11]

In this section we use the approach developed in the previous sections to con-
struct an algorithm for clustering time-series data and show its consistency under
the general assumption that the time series are stationary ergodic.

Given a finite set of objects the problem to “cluster” similar objects together,
in the absence of any examples of “good” clusterings, is notoriously hard to
formalize. Most of the work on clustering is concerned with particular parametric
data generating models, or particular algorithms, a given similarity measure, and
(very often) a given number of clusters. It is clear that, as in almost learning
problems, in clustering finding the right similarity measure is an integral part
of the problem. However, even if one assumes the similarity measure known,
it is hard to define what a good clustering is [52, 89]. What is more, even if
one assumes the similarity measure to be simply the Euclidean distance (on the
plane), and the number of clusters k known, then clustering may still appear
intractable for computational reasons. Indeed, in this case finding k centres
(points which minimize the cumulative distance from each point in the sample
to one of the centres) seems to be a natural goal, but this problem is NP-hard
[61].

In this section we consider the problem of clustering time-series data. That is,
each data point is itself a sample generated by a certain discrete-time stochastic
process. This version of the problem has numerous applications, such as cluster-
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ing biological data, financial observations, or behavioural patterns, and as such
it has gained a tremendous attention in the literature.

The main observation that we make here is that, in the case of clustering
processes, one can benefit from the notion of ergodicity to define what appears
to be a very natural notion of consistency. This notion of consistency is shown
to be satisfied by simple algorithms that we present, which are polynomial in all
arguments.

With these considerations in mind, define the clustering problem as follows.
N samples are given: x1 =(x1

1,...,x
1
n1

),...,xN =(xN1 ,...,x
N
nN

). Each sample is drawn
by one out of k different stationary ergodic distributions. The samples are not
assumed to be drawn independently; rather, it is assumed that the joint distri-
bution of the samples is stationary ergodic. The target clustering is as follows:
those and only those samples are put into the same cluster that were generated
by the same distribution. As is usual in the clustering literature, the number
k of target clusters is assumed to be known. A clustering algorithm is called
asymptotically consistent if the probability that it outputs the target clustering
converges to 1, as the lengths (n1,...,nN) of the samples tend to infinity (a variant
of this definition is to require the algorithm to stabilize on the correct answer
with probability 1). Note the particular regime of asymptotic: not with respect
to the number of samples N , but with respect to the length of the samples
n1,...,nN .

Similar formulations have appeared in the literature before. Perhaps the
most close approach is mixture models [84, 90]: it is assumed that there are
k different distributions that have a particular known form (such as Gaussian,
Hidden Markov models, or graphical models) and each one out of N samples
is generated independently according to one of these k distributions (with some
fixed probability). Since the model of the data is specified quite well, one can
use likelihood-based distances (and then, for example, the k-means algorithm),
or Bayesian inference, to cluster the data. Clearly, the main difference from our
setting is in that we do not assume any known model of the data; not even
between-sample independence is assumed.
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The problem of clustering in our formulation is close to the following two clas-
sical problems of mathematical statistics. The first one is homogeneity testing,
or the two-sample problem. Two samples x1 = (x1

1,...,x
1
n1

) and x2 = (x2
1,...,x

2
n2

)

are given, and it is required to test whether they were generated by the same
distribution, or by different distributions. This corresponds to clustering just
two data points (N=2) with the number k of clusters unknown: either k=1 or
k=2. As we show in Section 3.5, this problem is impossible to solve for station-
ary ergodic (binary-valued) processes, which is why we assume known k in this
section. The second problem is process classification, or the three-sample prob-
lem, that we have considered in detail in Section 3.2.2: Three samples x1,x2,x3

are given, it is known that two of them were generated by the same distribution,
while the third one was generated by a different distribution. It is required to
find out which two were generated by the same distribution. This corresponds
to clustering three data points, with the number of clusters k=2. The clustering
algorithm that we will present in this section is therefore a generalization of the
simple procedure of Section 3.2.2.

In this section we will also consider in some detail the question of calculating
empirical estimates of the distributional distance (on which all the algorithms in
this chapter are based). Although its definition involves infinite summation, we
show that it can be easily calculated.

3.4.1 Problem formulation

The clustering problem can be defined as follows. We are given N samples
x1,...,xN , where each sample xi is a string of length ni of symbols from A:
xi=X

i
1..ni

. Each sample is generated by one out of k different unknown stationary
ergodic distributions ρ1,...,ρk∈E. Thus, there is a partitioning I={I1,...,Ik} of
the set {1..N} into k disjoint subsets Ij,j=1..k

{1..N}=∪kj=1Ij,
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such that xj, 1≤j≤N is generated by ρj if and only if j∈Ij. The partitioning
I is called the target clustering and the sets Ii,1≤ i≤ k, are called the target
clusters. Given samples x1,...,xN and a target clustering I, let I(x) denote the
cluster that contains x.

A clustering function F takes a finite number of samples x1,...,xN and an
optional parameter k (the target number of clusters) and outputs a partition
F (x1,...,xN ,(k))={T1,...,Tk} of the set {1..N}.

Definition 3.14 (asymptotic consistency). Let a finite number N of samples be
given, and let the target clustering partition be I. Define n=min{n1,...,nN}. A
clustering function F is strongly asymptotically consistent if

F (x1,...,xN ,(k))=I

from some n on with probability 1. A clustering function is weakly asymptotically
consistent if

P (F (x1,...,xN ,(k))=I)→1.

Note that the consistency is asymptotic with respect to the minimal length
of the sample, and not with respect to the number of samples.

Since in this section we will be also interested in analysing computation com-
plexity of the proposed methods, we will use a slightly more detailed definition
of the distributional distance.

Definition 3.15. The distributional distance is defined for a pair of processes
ρ1,ρ2 as follows

d(ρ1,ρ2)=
∞∑

m,l=1

wmwl
∑

B∈Bm,l
|ρ1(B)−ρ2(B)|,

where wj =2−j.

105



The clustering algorithm below is based on empirical estimates of d:

d̂(X1
1..n1

,X2
1..n2

)=
∞∑

m,l=1

wmwl
∑

B∈Bm,l
|ν(X1

1..n1
,B)−ν(X2

1..n2
,B)|, (3.7)

where n1,n2∈N, ρ∈S, X i
1..ni
∈Ani .

It is easy to check that Lemma 3.3 holds for this modified definition of d as
well.

3.4.2 Clustering algorithm

Algorithm 1 is a simple clustering algorithm, which, given the number k of
clusters, will be shown to be consistent under most general assumptions. It
works as follows. The point x1 is assigned to the first cluster. Next, find the
point that is farthest away from x1 in the empirical distributional distance d̂,
and assign this point to the second cluster. For each j= 3..k, find a point that
maximizes the minimal distance to those points already assigned to clusters, and
assign it to the cluster j. Thus we have one point in each of the k clusters. Next
simply assign each of the remaining points to the cluster that contains the closest
points from those k already assigned. One can notice that Algorithm 1 is just
one iteration of the k-means algorithm, with so-called farthest-point initialization
[47], and a specially designed distance.

Proposition 3.16 (calculating d̂(x1,x2)). For two samples x1 =X1
1..n1

and x2 =

X2
1..n2

the computational complexity (time and space) of calculating the empirical
distributional distance d̂(x1,x2) (3.7) is O(n2logs−1

min), where n=max(n1,n2) and

smin = min
i=1..n1,j=1..n2,X1

i 6=X2
j

|X1
i −X2

j |.

Proof. First, observe that for fixed m and l, the sum

Tm,l :=
∑

B∈Bm,l
|ν(X1

1..n1
,B)−ν(X2

1..n2
,B)| (3.8)
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Algorithm 1 The case of known number of clusters k
INPUT: The number of clusters k, samples x1,...,xN .
Initialize: j :=1, c1 :=1, T1 :={xc1}.
for j :=2 to k do
cj :=argmax{i=1,...,N :minj−1

t=1 d̂(xi,xct)}
Tj :={xcj}

end for
for i=1 to N do
Put xi into the set Targminkj=1d̂(xi,xcj )

end for
OUTPUT: the sets Tj, j=1..k.

has not more than n1 +n2−2m+2 non-zero terms (assuming m ≤ n1,n2; the
other case is obvious). Indeed, for each i= 0,1, in the sample xi there are ni−
m+1 tuples of size k: X i

1..m,X
i
2..m+1,...,X

i
n1−m+1..n1

. Therefore, the complexity
of calculating Tm,l is O(n1+n2−2m+2) =O(n). Furthermore, observe that for
each m, for all l > logs−1

min the term Tm,l is constant. Therefore, it is enough to
calculate Tm,1,...,Tm,logs−1

min , since for fixed m

∞∑
l=1

wmwlT
m,l=wmwlogs−1

min
Tm,logs−1

min +

logs−1
min∑

l=1

wmwlT
m,l

(that is, we double the weight of the last non-zero term). Thus, the complex-
ity of calculating

∑∞
l=1wmwlT

m,l is O(nlogs−1
min). Finally, for all m>n we have

Tm,l=0. Since d̂(x1,x2)=
∑∞

m,l=1wm,wlT
m,l, the statement is proven.

Theorem 3.17. Let N ∈ N and suppose that the samples x1,...,xN are gen-
erated in such a way that the joint distribution is stationary ergodic. If the
correct number of clusters k is known, then Algorithm 1 is strongly asymp-
totically consistent. Algorithm 1 makes O(kN) calculations of d̂(·,·), so that
its computational complexity is O(kNn2

maxlogs−1
min), where nmax = maxki=1ni and

smin =minu,v=1..N,u6=v,i=1..nu,j=1..nv ,Xu
i 6=Xv

j
|Xu

i −Xv
j |.

Observe that the samples are not required to be generated independently.
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The only requirement on the distribution of samples is that the joint distribution
is stationary ergodic. This is perhaps one of the mildest possible probabilistic
assumptions.

Proof. By Lemma 3.3, d̂(xi,xj), i,j∈{1..N} converges to 0 if and only if xi and
xj are in the same cluster. Since there are only finitely many samples xi, there
exists some δ > 0 such that, from some n on, we will have d̂(xi,xj)<δ if xi,xj
belong to the same target cluster (I(xi) = I(xj)), and d̂(xi,xj) > δ otherwise
(I(xi) 6=I(xj)). Therefore, from some n on, for every j≤k we will have max{i=
1,...,N : minj−1

t=1 d̂(xi,xct)}>δ and the sample xcj , where cj = argmax{i= 1,...,N :

minj−1
t=1 d̂(xi,xct)}, will be selected from a target cluster that does not contain any

xci , i<j. The consistency statement follows.
Next, let us find how many pairwise distance estimates d̂(xi,xj) the algorithm

has to make. On the first iteration of the loop, it has to calculate d̂(xi,xc1)

for all i = 1..N . On the second iteration, it needs again d̂(xi,xc1) for all i =

1..N , which are already calculated, and also d̂(xi,xc2) for all i= 1..N , and so
on: on jth iteration of the loop we need to calculate d(xi,xcj), i= 1..N , which
gives at most kN pairwise distance calculations in total. The statement about
computational complexity follows from this and Proposition 3.16: indeed, apart
from the calculation of d̂, the rest of the computations is of order O(kN).

3.5 Discrimination between B-processes is impos-

sible [R5]

Two series of binary observations x1,x1,... and y1,y2,... are presented sequentially.
A discrimination procedure (or homogeneity test) D is a family of mappings
Dn :Xn×Xn→{0,1}, n∈N, X={0,1}, that maps a pair of samples (x1,...,xn),
(y1,...,yn) into a binary (“yes” or “no”) answer: the samples are generated by
different distributions, or they are generated by the same distribution.

A discrimination procedure D is asymptotically correct for a set C of process
distributions if for any two distributions ρx,ρy∈C independently generating the
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sequences x1,x2,... and y1,y2,... correspondingly the expected output converges
to the correct answer: the following limit exists and the equality holds

lim
n→∞

EDn((x1,...,xn),(y1,...,yn))=

{
0 if ρx=ρy,
1 otherwise.

This is perhaps the weakest notion of correctness one can consider. Clearly,
asymptotically correct discriminating procedures exist for many classes of pro-
cesses, for example for the class of all i.i.d. processes (e.g. [58]) and various
parametric families.

We show that there is no asymptotically correct discrimination procedure
for the class of all B-processes (see the definition below), meaning that for any
discrimination the expected answer does not converge to the correct one for some
processes. The class of B-processes is sufficiently wide to include, for example,
k-order Markov processes and functions of them, but, on the other hand, it
is a strict subset of the set of stationary ergodic processes. B-processes play
important role in such fields as information theory and ergodic theory [?, 67].

Previously, in [69] and [68] it was shown that consistent estimates of d̄-
distance (defined below) for B-processes exist, while it is impossible to estimate
this distance outside this class. In [69] it is also claimed that consistent discrim-
ination procedure does not exist for the set of all stationary ergodic processes;
however, what is shown in that work is that consistent estimate of d̄-distance do
not exist for this set. The result of this section is stronger than this claim: a
consistent discrimination procedure does not exist for a smaller set of processes,
that of all B-processes.

Next we define the d̄ distance and B-processes (mainly following [69] in our
formulations) and give more precise formulations of some of the existing results
mentioned above.

For two finite-valued stationary processes ρx and ρy the d̄-distance d̄(ρx,ρy)

is said to be less than ε if there exists a single stationary process νxy on pairs
(xn,yn), n∈N, such that xn, n∈N are distributed according to ρx and yn are
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distributed according to ρy while

νxy(x1 6=y1)≤ε. (3.9)

The infimum of the ε’s for which a coupling can be found such that (3.9) is
satisfied is taken to be the d̄-distance between ρx and ρy.

Definition 3.18. A process is called a B-process (or a Bernoulli process) if it
is in the d̄-closure of the set of all aperiodic stationary ergodic k-step Markov
processes, where k∈N.

For more information on d̄-distance and B-processes see [67]. As it was
mentioned, [69] constructs an estimator s̄n such that

lim
n→∞

s̄n((x1,...,xn),(y1,...,yn))= d̄(ρ1,ρ2) ρ1×ρ2–a.s. (3.10)

if both processes ρ1 and ρ2 generating the samples xi and yi respectively are
B-processes. In the same work it is shown that there is no estimator s̄n for
which (3.10) holds for every pair ρ1,ρ2 of stationary ergodic processes. Some
extensions of these results are given in [68].

It is interesting to compare these results to those that are obtained for the
distributional distance. As we have shown (Lemma 3.3), this distance can be
consistently estimated. Moreover, based on its estimate, we can also construct
a consistent change point estimate, as was demonstrated in Section 3.2 above.
On the other hand, the results of the present section implies that one cannot
consistently tell whether there is a change in the sample or not.

Summarizing, we can say that the stronger the distance the harder it is to
estimate: the distributional distance can be consistently estimated for stationary
ergodic processes, the d̄ distance can be consistently estimated for B-processes
but not for stationary ergodic processes, while the strongest possible distance—
the one that gives discrete topology, cannot be consistently estimated for B-
processes, as is shown in this section.

The main result of this section is the following theorem.
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Theorem 3.19. There is no asymptotically correct discrimination procedure for
the set of all B-processes.

The proof, which we defer to Section3.6.3, is by contradiction. It is assumed
that a consistent discrimination procedure exists, and a process is exhibited
that will trick such a procedure to give divergent results. The construction on
which the proof is based uses the ideas of the construction of B. Ryabko used in
[78] to demonstrate that consistent prediction for stationary ergodic processes is
impossible (see also the modification of this construction in [38]).

3.6 Longer proofs

3.6.1 Proof of Theorem 3.9

Proof. To prove the statement, we will show that for every γ, 0< γ < 1 with
probability 1 the inequality d̂(U t,V t)<d̂(X,Y ) holds for each t such that αk≤
t<γk possibly except for a finite number of times. Thus we will show that linear
γ-underestimates occur only a finite number of times, and for overestimate it is
analogous. Fix some γ, 0<γ<1 and ε>0. Let J be big enough to have

∑∞
i=Jwi<

ε/2 and also big enough to have an index j<J for which ρX(Bj) 6=ρY (Bj). Take
Mε∈N large enough to have |ν(Y,Bi)−ρY (Bi)|≤ε/2J for all m>Mε and for each
i, 1≤ i≤J , and also to have |Bi|/m<ε/J for each i, 1≤ i≤J . This is possible
since empirical frequencies converge to the limiting probabilities a.s. (that is,
Mε depends on the realizations Y1,Y2,... ) (cf. the proof of Lemma 3.3). Find a
Kε (that depends on X) such that for all k>Kε and for all i, 1≤ i≤J we have

|ν(U t,Bi)−ρX(Bi)|≤ε/2J for each t∈ [αn,...,k] (3.11)

(this is possible simply because αn→∞). Furthermore, we can select Kε large
enough to have |ν((Xs,Xs+1,...,Xk),Bi)−ρX(Bi)| ≤ ε/2J for each s≤ γk: this
follows from (3.11) and the indentity ν((Xs,Xs+1,...,Xk) = k

k−sν((X1,...,Xk)−
s−1
k−sν(X1,...,Xs−1)+o(1).
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So, for each s∈ [αn,γk] we have∣∣∣∣ν(V s,Bj)−
(1−γ)kρX(Bj)+mρY (Bj)

(1−γ)k+m

∣∣∣∣
≤

∣∣∣∣∣(1−γ)kν((Xs,...,Xk),Bj)+mν(Y,Bj)

(1−γ)k+m
−

(1−γ)kρX(Bj)+mρY (Bj)

(1−γ)k+m

∣∣∣∣∣+ |Bj|
m+γk

≤3ε/J,

for k>Kε and m>Mε (from the definitions of Kε and Mε). Hence

|ν(X,Bj)−ν(Y,Bj)|−|ν(U s,Bj)−ν(V s,Bj)|

≥|ν(X,Bj)−ν(Y,Bj)|

−
∣∣∣∣ν(U s,Bj)−

(1−γ)kρX(Bj)+mρY (Bj)

(1−γ)k+m

∣∣∣∣−3ε/J

≥|ρX(Bj)−ρY (Bj)|

−
∣∣∣∣ρX(Bj)−

(1−γ)kρX(Bj)+mρY (Bj)

(1−γ)k+m

∣∣∣∣−4ε/J

=δj−4ε/J,

for some δj that depends only on k/m and γ. Summing over all Bi, i∈N, we get

d̂(X,Y )−d̂(U s,V s)≥wjδj−5ε,

for all n such that k>Kε and m>Mε, which is positive for small enough ε.

3.6.2 Proofs for Section 3.3

The proofs will use the following lemmas.

Lemma 3.20 (smooth probabilities of deviation). Let m>2k>1, ρ∈S, H⊂S,
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and ε>0. Then

ρ(d̂(X1..m,H)≥ε)≤2ε′−1ρ(d̂(X1..k,H)≥ε′), (3.12)

where ε′ :=ε− 2k
m−k+1

−tk with tk being the sum of all the weights of tuples longer
than k in the definition of d: tk :=

∑
i:|Bi|>kwi. Further,

ρ(d̂(X1..m,H)≤ε)≤2ρ

(
d̂(X1..k,H)≤ m

m−k+1
2ε+

4k

m−k+1

)
. (3.13)

The meaning of this lemma is as follows. For any word X1..m, if it is far
away from (or close to) a given distribution µ (in the empirical distributional
distance), then some of its shorter subwords Xi..i+k are far from (close to) µ too.
In other words, for a stationary distribution µ, it cannot happen that a small
sample is likely to be close to µ, but a larger sample is likely to be far.

Proof. Let B be a tuple such that |B|<k and X1..m∈Am be any sample of size
m>1. The number of occurrences of B in X can be bounded by the number of
occurrences of B in subwords of X of length k as follows:

#(X1..m,B)≤ 1

k−|B|+1

m−k+1∑
i=1

#(Xi..i+k−1,B)+2k

=
m−k+1∑
i=1

ν(Xi..i+k−1,B)+2k.

Indeed, summing over i=1..m−k the number of occurrences of B in all Xi..i+k−1

we count each occurrence of B exactly k−|B|+1 times, except for those that
occur in the first and last k symbols. Dividing by m−|B|+1, and using the
definition (3.1), we obtain

ν(X1..m,B)≤ 1

m−|B|+1

(
m−k+1∑
i=1

ν(Xi..i+k−1,B)|+2k

)
. (3.14)
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Summing over all B, for any µ, we get

d̂(X1..m,µ)≤ 1

m−k+1

m−k+1∑
i=1

d̂(Xi..i+n−1,µ)+
2k

m−k+1
+tk, (3.15)

where in the right-hand side tk corresponds to all the summands in the left-hand
side for which |B|>k, where for the rest of the summands we used |B|≤k. Since
this holds for any µ, we conclude that

d̂(X1..m,H) ≤ 1

m−k+1

(
m−k+1∑
i=1

d̂(Xi..i+k−1,H)

)
+

2k

m−k+1
+ tk. (3.16)

Note that the d̂(Xi..i+k−1,H) ∈ [0,1]. Therefore, for the average in the r.h.s.
of (3.16) to be larger than ε′, at least ε′/2(m−k+1) summands have to be larger
than ε′/2.

Using stationarity, we can conclude

ρ
(
d̂(X1..k,H)≥ε′

)
≥ε′/2ρ

(
d̂(X1..m,H)≥ε

)
,

proving (3.12). The second statement can be proven similarly; indeed, analo-
gously to (3.14) we have

ν(X1..m,B)≥ 1

m−|B|+1

m−k+1∑
i=1

ν(Xi..i+k−1,B)− 2k

m−|B|+1

≥ 1

m−k+1

(
m−k+1

m

m−k+1∑
i=1

ν(Xi..i+k−1,B)

)
− 2k

m
,

where we have used |B| ≥ 1. Summing over different B, we obtain (similar
to (3.15)),

d̂(X1..m,µ)≥ 1

m−k+1

m−k+1∑
i=1

m−k+1

m
d̂k(Xi..i+n−1,µ)− 2k

m
(3.17)
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(since the frequencies are non-negative, there is no tn term here). For the average
in (3.17) to be smaller than ε, at least half of the summands must be smaller
than 2ε. Using stationarity of ρ, this implies (3.13).

Lemma 3.21. Let ρk ∈S, k∈N be a sequence of processes that converges to a
process ρ∗. Then, for any T ∈A∗ and ε>0 if ρk(T )>ε for infinitely many indices
k, then ρ∗(T )≥ε

Proof. The statement follows from the fact that ρ(T ) is continuous as a function
of ρ.

Proof of Theorem 3.11. To establish the first statement of Theorem 3.11, we
have to show that the family of tests ψα is consistent. By construction, for any
ρ∈clH0∩E we have ρ(ψα(X1..n)=1)≤α.

To prove the consistency of ψ, it remains to show that

ξ( lim
n→∞

ψα(X1..n)=1)

for any ξ∈H1 and α>0. To do this, fix any ξ∈H1 and let

∆:=d(ξ,clH0) := inf
ρ∈clH0∩E

d(ξ,ρ).

Since ξ /∈ clH0, we have ∆> 0. Suppose that there exists an α> 0, such that,
for infinitely many n, some samples from the ∆/2-neighbourhood of n-samples
around ξ are sorted as H0 by ψ, that is, Cn(clH0∩E,1−α)∩bn∆/2(ξ) 6=∅. Then
for these n we have γn(clH0∩E,1−α)≥∆/2.

This means that there exists an increasing sequence nm,m∈N, and a sequence
ρm∈clH0, m∈N, such that

ρm(d̂(X1..nm ,clH0∩E)>∆/2)>α.

Using Lemma 3.20, (3.12) (with ρ= ρm, m= nm, k = nk, and H = clH0), and
taking k large enough to have tnk < ∆/4, for every m large enough to have
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2nk
nm−nk+1

<∆/4, we obtain

8∆−1ρm

(
d̂(X1..nk ,clH0)≥∆/4

)
≥ρm

(
d̂(X1..nm ,clH0)≥∆/2

)
>α. (3.18)

Thus,
ρm(bnk∆/4(clH0∩E))<1−α∆/8. (3.19)

Since the set clH0 is compact (as a closed subset of a compact set S), we may
assume (passing to a subsequence, if necessary) that ρm converges to a certain
ρ∗∈clH0. Since (3.19) this holds for infinitely many m, using Lemma 3.21 (with
T =bnk∆/4(clH0∩E)) we conclude that

ρ∗(b
nk
∆/4(clH0∩E))≤1−∆α/8.

Since the latter inequality holds for infinitely many indices k we also have

ρ∗(lim sup
n→∞

d̂(X1..n,clH0∩E)>∆/4)>0.

However, we must have ρ∗(limn→∞d̂(X1..n,clH0∩E) = 0) = 1 for every ρ∗∈ clH0:
indeed, for ρ∗ ∈ clH0∩E it follows from Lemma 3.3, and for ρ∗ ∈ clH0\E from
Lemma 3.3, ergodic decomposition and the conditions of the theorem (Wρ(H0)=

1 for ρ∈clH0).
This contradiction shows that for every α there are not more than finitely

many n for which Cn(clH0∩E,1−α)∩bn∆/2(ξ) 6=∅. To finish the proof of the first
statement, it remains to note that, as follows from Lemma 3.3,

ξ{X1,X2,.... :X1..n∈bn∆/2(ξ) from some n on}≥ξ
(

lim
n→∞

d̂(X1..n,ξ)=0
)

=1.

To establish the second statement of Theorem 3.11 we assume that there
exists a consistent test ϕ for H0 against H1, and we will show that Wρ(H1)=0
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for every ρ∈clH0. Take ρ∈clH0 and suppose that Wρ(H1)=δ>0. We have

lim sup
n→∞

∫
H1

dWρ(µ)µ(ψδ/2n =0)≤
∫
H1

dWρ(µ)lim sup
n→∞

µ(ψδ/2n =0)=0,

where the inequality follows from Fatou’s lemma (the functions under integral
are all bounded by 1), and the equality from the consistency of ψ. Thus, from
some n on we will have

∫
H1
dWρµ(ψ

δ/2
n =0)<1/4 so that ρ(ψ

δ/2
n =0)<1−3δ/4. For

any set T ∈An the function µ(T ) is continuous as a function of T . In particular,
it holds for the set T := {X1..n :ψ

δ/2
n (X1..n) = 0}. Therefore, since ρ∈ clH0, for

any n large enough we can find a ρ′ ∈ H0 such that ρ′(ψδ/2n = 0) < 1−3δ/4,
which contradicts the consistency of ψ. Thus, Wρ(H1)=0, and Theorem 3.11 is
proven.

Proof of Theorem 3.10. To prove the first statement of the theorem, we will show
that the test ϕH0,H1 is a uniformly consistent test for clH0∩E against clH1∩E
(and hence for H0 against H1), under the conditions of the theorem. Suppose
that, on the contrary, for some α>0 for every n′∈N there is a process ρ∈clH0

such that ρ(ϕ(X1..n)=1)>α for some n>n′. Define

∆:=d(clH0,clH1) := inf
ρ0∈clH0∩E,ρ1∈clH1∩E

d(ρ0,ρ1),

which is positive since clH0 and clH1 are closed and disjoint. We have

α<ρ(ϕ(X1..n)=1)

≤ρ(d̂(X1..n,H0)≥∆/2 or d̂(X1..n,H1)<∆/2)

≤ρ(d̂(X1..n,H0)≥∆/2)+ρ(d̂(X1..n,H1)<∆/2). (3.20)

This implies that either ρ(d̂(X1..n,clH0)≥∆/2)>α/2 or ρ(d̂(X1..n,clH1)<∆/2)>

α/2, so that, by assumption, at least one of these inequalities holds for infinitely
many n∈N for some sequence ρn∈H0. Suppose that it is the first one, that is,
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there is an increasing sequence ni, i∈N and a sequence ρi∈clH0, i∈N such that

ρi(d̂(X1..ni ,clH0)≥∆/2)>α/2 for all i∈N. (3.21)

The set S is compact, hence so is its closed subset clH0. Therefore, the sequence
ρi, i∈N must contain a subsequence that converges to a certain process ρ∗ ∈
clH0. Passing to a subsequence if necessary, we may assume that this convergent
subsequence is the sequence ρi, i∈N itself.

Using Lemma 3.20, (3.12) (with ρ= ρnm , m= nm, k = nk, and H = clH0),
and taking k large enough to have tnk<∆/4, for every m large enough to have

2nk
nm−nk+1

<∆/4, we obtain

8∆−1ρnm

(
d̂(X1..nk ,clH0)≥∆/4

)
≥ρnm

(
d̂(X1..nm ,clH0)≥∆/2

)
>α/2. (3.22)

That is, we have shown that for any large enough index nk the inequality
ρnm(d̂(X1..nk ,clH0)≥∆/4)>∆α/16 holds for infinitely many indices nm. From
this and Lemma 3.21 with T =Tk :={X : d̂(X1..nk ,clH0)≥∆/4} we conclude that
ρ∗(Tk)>∆α/16. The latter holds for infinitely many k; that is, ρ∗(d̂(X1..nk ,clH0)≥
∆/4)>∆α/16 infinitely often. Therefore,

ρ∗(lim sup
n→∞

d(X1..n,clH0)≥∆/4)>0.

However, we must have

ρ∗( lim
n→∞

d(X1..n,clH0)=0)=1

for every ρ∗∈clH0: indeed, for ρ∗∈clH0∩E it follows from Lemma 3.3, and for
ρ∗ ∈ clH0\E from Lemma 3.3, ergodic decomposition and the conditions of the
theorem.

Thus, we have arrived at a contradiction that shows that ρn(d̂(X1..n,clH0)>

∆/2)>α/2 cannot hold for infinitely many n∈N for any sequence of ρn∈clH0.
Analogously, we can show that ρn(d̂(X1..n,clH1)<∆/2)>α/2 cannot hold for
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infinitely many n∈N for any sequence of ρn∈clH0. Indeed, using Lemma 3.20,
equation (3.13), we can show that ρnm(d̂(X1..nm ,clH1)≤∆/2)>α/2 for a large
enough nm implies ρnm(d̂(X1..nk ,clH1)≤3∆/4)>α/4 for a smaller nk. Therefore,
if we assume that ρn(d̂(X1..n,clH1)<∆/2)>α/4 for infinitely many n∈N for some
sequence of ρn ∈ clH0, then we will also find a ρ∗ for which ρ∗(d̂(X1..n,clH1)≤
3∆/4)>α/4 for infinitely many n, which, using Lemma 3.3 and ergodic decompo-
sition, can be shown to contradict the fact that ρ∗(limn→∞d(X1..n,clH1)≥∆)=1.

Thus, returning to (3.20), we have shown that from some n on there is no
ρ∈ clH0 for which ρ(ϕ= 1)>α holds true. The statement for ρ∈ clH1 can be
proven analogously, thereby finishing the proof of the first statement.

To prove the second statement of the theorem, we assume that there exists a
uniformly consistent test ϕ forH0 againstH1, and we will show thatWρ(H1−i)=0

for every ρ∈clHi. Indeed, let ρ∈clH0, that is, suppose that there is a sequence
ξi∈H0,i∈N such that ξi→ρ. Assume Wρ(H1) = δ>0 and take α := δ/2. Since
the test ϕ is uniformly consistent, there is an N ∈N such that for every n>N
we have

ρ(ϕ(X1..n=0))≤
∫
H1

ϕ(X1..n=0)dWρ+

∫
E\H1

ϕ(X1..n=0)dWρ

≤δα+1−δ≤1−δ/2.

Recall that, for T ∈A∗, µ(T ) is a continuous function in µ. In particular, this
holds for the set T = {X ∈An :ϕ(X) = 0}, for any given n∈N. Therefore, for
every n>N and for every i large enough, ρi(ϕ(X1..n) =0)<1−δ/2 implies also
ξi(ϕ(X1..n) = 0)< 1−δ/2 which contradicts ξi ∈H0. This contradiction shows
Wρ(H1)=0 for every ρ∈clH0. The case ρ∈clH1 is analogous.

Proof of Proposition 3.13. Consider the process (x1,y1),(x2,y2),... on pairs (xi,yi)∈
A2, such that the distribution of x1,x2,... is ν, the distribution of y1,y2,... is ρ
and the two components xi and yi are independent; in other words, the distribu-
tion of (xi,yi) is ν×ρ. Consider also a two-state stationary ergodic Markov chain
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µ, with two states 1 and 2, whose transition probabilities are

(
1−p p

q 1−q

)
,

where 0<p<q<1. The limiting (and initial) probability of the state 1 is p/(p+q)

and that of the state 2 is q/(p+q). Finally, the process z1,z2,... is constructed as
follows: zi=xi if µ is in the state a and zi=yi otherwise (here it is assumed that
the chain µ generates a sequence of outcomes independently of (xi,yi). Clearly,
for every p,q satisfying 0<p< q < 1 the process z1,z2,... is stationary ergodic;
denote ζ its distribution. Let pn :=1/(n+1), n∈N. Since d(ρ,ν)>ε, we can find
a δ > 0 such that d(ρ,ζn)>ε where ζn is the distribution ζ with parameters pn
and qn, where qn satisfies qn/(pn+qn)=δ. Thus, ζn∈H1 for all n∈N. However,
limn→∞ζn = ζ∞ where ζ∞ is the stationary distribution with Wζ∞(ρ) = δ and
Wζ∞(ν)=1−δ. Therefore, ζ∞∈clH1 and Wζ∞(H0)>0, so that by Theorem 3.10
there is no uniformly consistent test for H0 against H1.

3.6.3 Proof of Theorem 3.19

We will assume that asymptotically correct discrimination procedure D for the
class of all B-processes exists, and will construct a B-process ρ such that if
both sequences xi and yi, i ∈ N are generated by ρ then EDn diverges; this
contradiction will prove the theorem.

The scheme of the proof is as follows. On Step 1 we construct a sequence
of processes ρ2k, ρd2k+1, and ρu2k+1, where k=0,1,... . On Step 2 we construct a
process ρ, which is shown to be the limit of the sequence ρ2k, k∈N, in d̄-distance.
On Step 3 we show that two independent runs of the process ρ have a property
that (with high probability) they first behave like two runs of a single process
ρ0, then like two runs of two different processes ρu1 and ρd1, then like two runs
of a single process ρ2, and so on, thereby showing that the test D diverges and
obtaining the desired contradiction.

Assume that there exists an asymptotically correct discriminating proce-
dure D. Fix some ε∈(0,1/2) and δ∈ [1/2,1), to be defined on Step 3.

Step 1. We will construct the sequence of process ρ2k, ρu2k+1, and ρd2k+1,
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where k=0,1,... .
Step 1.0. Construct the process ρ0 as follows. A Markov chain m0 is defined

on the set N of states. From each state i∈N the chain passes to the state 0

with probability δ and to the state i+1 with probability 1−δ. With transition
probabilities so defined, the chain possesses a unique stationary distribution M0

on the set N, which can be calculated explicitly using e.g. [83, Theorem VIII.4.1],
and is as follows: M0(0)=δ,M0(k)=δ(1−δ)k, for all k∈N. Take this distribution
as the initial distribution over the states.

The function f0 maps the states to the output alphabet {0,1} as follows:
f0(i)=1 for every i∈N. Let st be the state of the chain at time t. The process
ρ0 is defined as ρ0 = f0(st) for t∈N. As a result of this definition, the process
ρ0 simply outputs 1 with probability 1 on every time step (however, by using
different functions f we will have less trivial processes in the sequel). Clearly, the
constructed process is stationary ergodic and a B-process. So, we have defined
the chain m0 (and the process ρ0) up to a parameter δ.

Step 1.1. We begin with the process ρ0 and the chain m0 of the previous
step. Since the test D is asymptotically correct we will have

Eρ0×ρ0Dt0((x1,...,xt0),(y1,...,yt0))<ε,

from some t0 on, where both samples xi and yi are generated by ρ0 (that is, both
samples consist of 1s only). Let k0 be such an index that the chain m0 starting
from the state 0 with probability 1 does not reach the state k0−1 by time t0 (we
can take k0 = t0+2).

Construct two processes ρu1 and ρd1 as follows. They are also based on the
Markov chain m0, but the functions f are different. The function fu1 :N→{0,1}
is defined as follows: fu1(i) = f0(i) = 1 for i≤ k0 and fu1(i) = 0 for i > k0. The
function fd1 is identically 1 (fd1(i) = 1, i∈N). The processes ρu1 and ρd1 are
defined as ρu1 =fu1(st) and ρd1 =fd1(st) for t∈N. Thus the process ρd1 will again
produce only 1s, but the process ρu1 will occasionally produce 0s.

Step 1.2. Being run on two samples generated by the processes ρu1 and ρd1
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which both start from the state 0, the test Dn on the first t0 steps produces
many 0s, since on these first k0 states all the functions f , fu1 and fd1 coincide.
However, since the processes are different and the test is asymptotically correct
(by assumption), the test starts producing 1s, until by a certain time step t1

almost all answers are 1s. Next we will construct the process ρ2 by “gluing”
together ρu1 and ρd1 and continuing them in such a way that, being run on two
samples produced by ρ2 the test first produces 0s (as if the samples were drawn
from ρ0), then, with probability close to 1/2 it will produce many 1s (as if the
samples were from ρu1 and ρd1) and then again 0s.

The process ρ2 is the pivotal point of the construction, so we give it in some
detail. On step 1.2a we present the construction of the process, and on step 1.2b
we show that this process is a B-process by demonstrating that it is equivalent
to a (deterministic) function of a Markov chain.

Step 1.2a. Let t1>t0 be such a time index that

Eρu1×ρd1Dk((x1,...,xt1),(y1,...,yt1))>1−ε,

where the samples xi and yi are generated by ρu1 and ρd1 correspondingly (the
samples are generated independently; that is, the process are based on two in-
dependent copies of the Markov chain m0). Let k1>k0 be such an index that
the chain m starting from the state 0 with probability 1 does not reach the state
k1−1 by time t1.

Construct the process ρ2 as follows (see fig. 3.1). It is based on a chain m2

on which Markov assumption is violated. The transition probabilities on states
0,...,k0 are the same as for the Markov chain m (from each state return to 0 with
probability δ or go to the next state with probability 1−δ).

There are two “special” states: the “switch” S2 and the “reset” R2. From the
state k0 the chain passes with probability 1−δ to the “switch” state S2. The
switch S2 can itself have two values: up and down. If S2 has the value up then
from S2 the chain passes to the state uk0+1 with probability 1, while if S2 =down

the chain goes to dk0+1, with probability 1. If the chain reaches the state R2 then
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Figure 3.1: The processes m2 and ρ2. The states are depicted as circles, the arrows
symbolize transition probabilities: from every state the process returns to 0 with prob-
ability δ or goes to the next state with probability 1−δ. From the switch S2 the process
passes to the state indicated by the switch (with probability 1); here it is the state
uk0+1. When the process passes through the reset R2 the switch S2 is set to either
up or down with equal probabilities. (Here S2 is in the position up.) The function f2

is 1 on all states except uk0+1,...,uk1 where it is 0; f2 applied to the states output by
m2 defines ρ2.
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the value of S2 is set to up with probability 1/2 and with probability 1/2 it is set
to down. In other words, the first transition from S2 is random (either to uk0+1

or to dk0+1 with equal probabilities) and then this decision is remembered until
the “reset” state R2 is visited, whereupon the switch again assumes the values
up and down with equal probabilities.

The rest of the transitions are as follows. From each state ui, k0≤ i≤k1 the
chain passes to the state 0 with probability δ and to the next state ui+1 with
probability 1−δ. From the state uk1 the process goes with probability δ to 0
and with probability 1−δ to the “reset” state R2. The same with states di: for
k0<i≤k1 the process returns to 0 with probability δ or goes to the next state
di+1 with probability 1−δ, where the next state for dk1 is the “reset” state R2.
From R2 the process goes with probability 1 to the state k1+1 where from the
chain continues ad infinitum: to the state 0 with probability δ or to the next
state k1+2 etc. with probability 1−δ.

The initial distribution on the states is defined as follows. The probabilities
of the states 0..k0,k1+1,k1+2,... are the same as in the Markov chain m0, that is,
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Figure 3.2: The process m′2. The function f2 is 1 everywhere except the states
uk0+1,...,uk1 , where it is 0.
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δ(1−δ)j, for j=0..k0,k1+1,k1+2,... . For the states uj and dj, k0<j≤k1 define
their initial probabilities to be 1/2 of the probability of the corresponding state
in the chain m0, that is m2(uj)=m2(dj)=m0(j)/2=δ(1−δ)j/2. Furthermore, if
the chain starts in a state uj, k0<j≤k1, then the value of the switch S2 is up,
and if it starts in the state dj then the value of the switch S2 is down, whereas
if the chain starts in any other state then the probability distribution on the
values of the switch S2 is 1/2 for either up or down.

The function f2 is defined as follows: f2(i)=1 for 0≤i≤k0 and i>k1 (before
the switch and after the reset); f2(ui) = 0 for all i, k0<i≤k1 and f2(di) = 1 for
all i, k0<i≤k1. The function f2 is undefined on S2 and R2, therefore there is no
output on these states (we also assume that passing through S2 and R2 does not
increment time). As before, the process ρ2 is defined as ρ2 = f2(st) where st is
the state of m2 at time t, omitting the states S2 and R2. The resulting process
s illustrated on fig. 3.1.

Step 1.2b. To show that the process ρ2 is stationary ergodic and a B-
process, we will show that it is equivalent to a function of a stationary ergodic
Markov chain, whereas all such process are known to be B (e.g. [?]). The con-
struction is as follows (see fig. 3.2). This chain has states k1 +1,... and also
u0,...,uk0 ,uk0+1,...,uk1 and d0,...,dk0 ,dk0+1,...,dk1 . From the states ui, i= 0,...,k1

the chain passes with probability 1−δ to the next state ui+1, where the next
state for uk1 is k+1 and with probability δ returns to the state u0 (and not to

124



the state 0). Transitions for the state d0,...,dk1−1 are defined analogously. Thus
the states uki correspond to the state up of the switch S2 and the states dki — to
the state down of the switch. Transitions for the states k+1,k+2,... are defined
as follows: with probability δ/2 to the state u0, with probability δ/2 to the state
d0, and with probability 1−δ to the next state. Thus, transitions to 0 from
the states with indices greater than k1 corresponds to the reset R2. Clearly, the
chain m′2 as defined possesses a unique stationary distribution M2 over the set
of states and M2(i)>0 for every state i. Moreover, this distribution is the same
as the initial distribution on the states of the chain m0, except for the states ui
and di, for which we have m′2(ui)=m′2(di)=m0(i)/2= δ(1−δ)i/2, for 0≤ i≤k0.
We take this distribution as its initial distribution on the states of m′2. The
resulting process m′2 is stationary ergodic, and a B-process, since it is a function
of a Markov chain [?]. It is easy to see that if we define the function f2 on the
states of m′2 as 1 on all states except uk0+1,...,uk1 , then the resulting process is
exactly the process ρ2. Therefore, ρ2 is stationary ergodic and a B-process.

Step 1.k. As before, we can continue the construction of the processes ρu3

and ρd3, that start with a segment of ρ2. Let t2>t1 be a time index such that

Eρ2×ρ2Dt2<ε,

where both samples are generated by ρ2. Let k2>k1 be such an index that when
starting from the state 0 the process m2 with probability 1 does not reach k2−1

by time t2 (equivalently: the process m′2 does not reach k2−1 when starting from
either u0 or d0). The processes ρu3 and ρd3 are based on the same process m2 as
ρ2. The functions fu3 and fd3 coincide with f2 on all states up to the state k2

(including the states ui and di, k0<i≤k1). After k2 the function fu3 outputs 0s
while fd3 outputs 1s: fu3(i)=0, fd3(i)=1 for i>k2.

Furthermore, we find a time t3>t2 by which we have Eρu3×ρd3Dt3>1−ε, where
the samples are generated by ρu3 and ρd3, which is possible since D is consistent.
Next, find an index k3>k2 such that the process m2 does not reach k3−1 with
probability 1 if the processes ρu3 and ρd3 are used to produce two independent
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sequences and both start from the state 0. We then construct the process ρ4

based on a (non-Markovian) processm4 by “gluing” together ρu3 and ρd3 after the
step k3 with a switch S4 and a reset R4 exactly as was done when constructing
the process ρ2. The processm4 is illustrated on fig. 3.3a). The processm4 can be
shown to be equivalent to a Markov chain m′4, which is constructed analogously
to the chain m′2 (see fig. 3.3b). Thus, the process ρ4 is can be shown to be a
B-process.

Figure 3.3: a) The processes m4. b) The Markov chain m′4
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Proceeding this way we can construct the processes ρ2j, ρu2j+1 and ρd2j+1,
j ∈N choosing the time steps tj > tj−1 so that the expected output of the test
approaches 0 by the time tj being run on two samples produced by ρj for even
j, and approaches 1 by the time tj being run on samples produced by ρuj and
ρdj for odd j:

Eρ2j×ρ2jDt2j<ε (3.23)

and
Eρu2j+1×ρd2j+1

Dt2j+1
>(1−ε). (3.24)

For each j the number kj > kj−1 is selected in a such a way that the state
kj−1 is not reached (with probability 1) by the time tj when starting from the
state 0. Each of the processes ρ2j, ρu2j+1 and ρdj2+1, j ∈N can be shown to be
stationary ergodic and a B-process by demonstrating equivalence to a Markov
chain, analogously to the Step 1.2. The initial state distribution of each of the
processes ρt,t∈N is Mt(k)=δ(1−δ)k and Mt(uk)=Mt(dk)=δ(1−δ)k/2 for those
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k∈N for which the corresponding states are defined.
Step 2. Having defined kj, j∈N we can define the process ρ. The construction

is given on Step 2a, while on Step 2b we show that ρ is stationary ergodic and
a B-process, by showing that it is the limit of the sequence ρ2j, j∈N.

Step 2a. The process ρ can be constructed as follows (see fig. 3.4). The

Figure 3.4: The processes mρ and ρ. The states are on horizontal lines. The
function f being applied to the states of mρ defines the process ρ. Its value is
0 on the states on the upper lines (states uk2j+1,...,uk2j+1

, where k∈N) and 1 on
the rest of the states.

s
�
�

@

@@

��
R2

f=0

f=1

f=1

sR�
@

@@

��
R4

f=0

f=1

f=1

s
�
�

@

@@

��
R6

f=0

f=1

f=1

...

construction is based on the (non-Markovian) process mρ that has states 0,...,k0,
k2j+1+1,...,k2(j+1), uk2j+1,...,uk2j+1

and dk2j+1,...,dk2j+1
for j∈N, along with switch

states S2j and reset states R2j. Each switch S2j diverts the process to the state
uk2j+1 if the switch has value up and to dk2j+1 if it has the value down. The
reset R2j sets S2j to up with probability 1/2 and to down also with probability
1/2. From each state that is neither a reset nor a switch, the process goes to
the next state with probability 1−δ and returns to the state 0 with probability
δ (cf. Step 1k).

The initial distribution Mρ on the states of mρ is defined as follows. For
every state i such that 0≤ i≤ k0 and k2j+1 < i≤ k2j+2, j = 0,1,... , define the
initial probability of the state i as Mρ(i) = δ(1−δ)i (the same as in the chain
m0), and for the sets uj and dj (for those j for which these sets are defined) let
Mρ(uj)=Mρ(dj):=δ(1−δ)i/2 (that is, 1/2 of the probability of the corresponding
state of m0).

The function f is defined as 1 everywhere except for the states uj (for all
j ∈N for which uj is defined) on which f takes the value 0. The process ρ is
defined at time t as f(st), where st is the state of mρ at time t.

Step 2b. To show that ρ is a B-process, let us first show that it is stationary.
Recall the definition 3.2 of the distributional distance between (arbitrary) process
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distributions. The set of all stochastic processes, equipped with this distance, is
complete, and the set of all stationary processes is its closed subset [36]. Thus,
to show that the process ρ is stationary it suffices to show that limj→∞d(ρ2j,ρ)=

0, since the processes ρ2j, j ∈ N, are stationary. To do this, it is enough to
demonstrate that

lim
j→∞
|ρ((x1,...,x|B|)=B)−ρ2j((x1,...,x|B|)=B)|=0 (3.25)

for each B ∈X∗. Since the processes mρ and m2j coincide on all states up to
k2j+1, we have

|ρ(xn=a)−ρ2j(xn=a)|= |ρ(x1 =a)−ρ2j(x1 =a)|

≤
∑

k>k2j+1

Mρ(k)+
∑

k>k2j+1

M2j(k)

for every n∈N and a∈X. Moreover, for any tuple B∈X∗ we obtain

|ρ((x1,...,x|B|)=B)−ρ2j((x1,...,x|B|)=B)|

≤|B|

 ∑
k>k2j+1

Mρ(k)+
∑

k>k2j+1

M2j(k)

→0

where the convergence follows from k2j→∞. We conclude that (3.25) holds true,
so that d(ρ,ρ2j)→0 and ρ is stationary.

To show that ρ is a B-process, we will demonstrate that it is the limit of
the sequence ρ2k, k∈N in the d̄ distance (which was only defined for stationary
processes). Since the set of all B-process is a closed subset of all stationary
processes, it will follow that ρ itself is a B-process. (Observe that this way we
get ergodicity of ρ “for free”, since the set of all ergodic processes is closed in d̄
distance, and all the processes ρ2j are ergodic.) In order to show that d̄(ρ,ρ2k)→0

we have to find for each j a processes ν2j on pairs (x1,y1),(x2,y2),... , such that xi
are distributed according to ρ and yi are distributed according to ρ2j, and such
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that limj→∞ν2j(x1 6=y1)=0. Construct such a coupling as follows. Consider the
chains mρ and m2j, which start in the same state (with initial distribution being
Mρ) and always take state transitions together, where if the process mρ is in the
state ut or dt, t≥k2j+1 (that is, one of the states which the chain m2j does not
have) then the chain m2j is in the state t. The first coordinate of the process
ν2j is obtained by applying the function f to the process mρ and the second by
applying f2j to the chain m2j. Clearly, the distribution of the first coordinate is
ρ and the distribution of the second is ρ2j. Since the chains start in the same
state and always take state transitions together, and since the chains mρ and
m2j coincide up to the state k2j+1 we have ν2j(x1 6= y1)≤

∑
k>k2j+1

Mρ(k)→ 0.
Thus, d̄(ρ,ρ2j)→0, so that ρ is a B-process.

Step 3. Finally, it remains to show that the expected output of the test D
diverges if the test is run on two independent samples produced by ρ.

Recall that for all the chains m2j, mu2j+1 and md2j+1 as well as for the chain
mρ, the initial probability of the state 0 is δ. By construction, if the process mρ

starts at the state 0 then up to the time step k2j it behaves exactly as ρ2j that
has started at the state 0. In symbols, we have

Eρ×ρ(Dt2j |sx0 =0,sy0 =0)=Eρ2j×ρ2j(Dt2j |sx0 =0,sy0 =0) (3.26)

for j ∈N, where sx0 and sy0 denote the initial states of the processes generating
the samples x and y correspondingly.

We will use the following simple decomposition

E(Dtj)=δ2E(Dtj |sx0 =0,sy0 =0)+(1−δ2)E(Dtj |sx0 6=0 or sy0 6=0), (3.27)

From this, (3.26) and (3.23) we have

Eρ×ρ(Dt2j)≤δ2Eρ×ρ(Dt2j |sx0 =0,sy0 =0)+(1−δ2)

=δ2Eρ2j×ρ2j(Dt2j |sx0 =0,sy0 =0)+(1−δ2)

≤Eρ2j×ρ2j+(1−δ2)<ε+(1−δ2). (3.28)
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For odd indices, if the process ρ starts at the state 0 then (from the definition
of t2j+1) by the time t2j+1 it does not reach the reset R2j; therefore, in this case
the value of the switch S2j does not change up to the time t2j+1. Since the
definition of mρ is symmetric with respect to the values up and down of each
switch, the probability that two samples x1,...,xt2j+1

and y1,...,yt2j+1
generated

independently by (two runs of) the process ρ produced different values of the
switch S2j when passing through it for the first time is 1/2. In other words, with
probability 1/2 two samples generated by ρ starting at the state 0 will look by
the time t2j+1 as two samples generated by ρu2j+1 and ρd2j+1 that has started at
state 0. Thus

Eρ×ρ(Dt2j+1
|sx0 =0,sy0 =0)≥ 1

2
Eρu2j+1×ρd2j+1

(Dt2j+1
|sx0 =0,sy0 =0) (3.29)

for j∈N. Using this, (3.27), and (3.24) we obtain

Eρ×ρ(Dt2j+1
)≥δ2Eρ×ρ(Dt2j+1

|sx0 =0,sy0 =0)

≥ 1

2
δ2Eρ2j+1×ρ2j+1

(Dt2j+1
|sx0 =0,sy0 =0)

≥ 1

2

(
Eρ2j+1×ρ2j+1

(Dt2j+1
)−(1−δ2)

)
>

1

2
(δ2−ε). (3.30)

Taking δ large and ε small (e.g. δ = 0.9 and ε = 0.1), we can make the
bound (3.28) close to 0 and the bound (3.30) close to 1/2, and the expected
output of the test will cross these values infinitely often. Therefore, we have
shown that the expected output of the test D diverges on two independent runs
of the process ρ, contradicting the consistency ofD. This contradiction concludes
the proof.
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Chapter 4

Finding an optimal strategy in a
reactive environment [R7]

Many real-world “learning” problems (like learning to drive a car or playing a
game) can be modelled as an agent π that interacts with an environment µ and
is (occasionally) rewarded for its behaviour. We are interested in agents which
perform well in the sense of having high long-term reward, also called the value
V (µ,π) of agent π in environment µ. If µ is known, it is a pure (non-learning)
computational problem to determine the optimal agent πµ :=argmaxπV (µ,π). It
is far less clear what an “optimal” agent means, if µ is unknown. A reasonable
objective is to have a single policy π with high value simultaneously in many
environments. We will formalize and call this criterion self-optimizing later.

This problem generalizes dramatically the problem of sequence prediction,
as well as those of classification and (to a large extent) hypothesis testing. For
example, the problem of sequence prediction is a special case in which actions
have no impact on the environment. While being very general, the problem of
finding an optimal strategy in a reactive environment is also very difficult; the
results of this chapter present some first steps in attacking this problem in full
generality.

Some related work. Reinforcement learning, sequential decision theory, adap-
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tive control theory, and active expert advice, are theories dealing with this prob-
lem. They overlap but have different core focus: Reinforcement learning algo-
rithms [86] are developed to learn µ or directly its value. Temporal difference
learning is computationally very efficient, but has slow asymptotic guarantees
(only) in (effectively) small observable MDPs. Others have faster guarantee in
finite state MDPs [14]. There are algorithms [31] which are optimal for any
finite connected POMDP, and this is apparently the largest class of environ-
ments considered. In sequential decision theory, a Bayes-optimal agent π∗ that
maximizes V (ξ,π) is considered, where ξ is a mixture of environments ν ∈ C

and C is a class of environments that contains the true environment µ∈C [41].
Policy π∗ is self-optimizing in an arbitrary class C, provided C allows for self-
optimizingness [40]. Adaptive control theory [57] considers very simple (from
an AI perspective) or special systems (e.g. linear with quadratic loss function),
which sometimes allow computationally and data efficient solutions. Action with
expert advice [24, 71, 72, 18] constructs an agent (called master) that performs
nearly as well as the best agent (best expert in hindsight) from some class of
experts, in any environment ν.

The difficulty in active learning problems can be identified (at least, for count-
able classes) with traps in the environments. Initially the agent does not know
µ, so has asymptotically to be forgiven in taking initial “wrong” actions. A
well-studied such class are ergodic MDPs which guarantee that, from any action
history, every state can be (re)visited [40].

The results. The aim of this chapter is to characterize as general as possi-
ble classes C in which self-optimizing behaviour is possible (more general than
POMDPs). To do this, we need to characterize classes of environments that
forgive. For instance, exact state recovery is unnecessarily strong; it is sufficient
being able to recover high rewards, from whatever states. Further, in many
real world problems there is no information available about the “states” of the
environment (e.g. in POMDPs) or the environment may exhibit long history
dependencies.

We propose to consider only environments in which, after any arbitrary finite
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sequence of actions, the best value is still achievable. The performance criterion
here is asymptotic average reward. Thus we consider such environments for
which there exists a policy whose asymptotic average reward exists and upper-
bounds asymptotic average reward of any other policy. Moreover, the same
property should hold after any finite sequence of actions has been taken (no
traps). We call such environments recoverable. If we only want to get ε-close to
the optimal value infinitely often with decreasing ε (that is, to have the same
upper limit for the average value), then this property is already sufficient.

Yet recoverability in itself is not sufficient for identifying behaviour which
results in optimal limiting average value. We require further that, from any
sequence of k actions, it is possible to return to the optimal level of reward
in o(k) steps; that is, it is not just possible to recover after any sequence of
(wrong) actions, but it is possible to recover fast. Environments which possess
this property are called value-stable. (These conditions will be formulated in a
probabilistic form.)

We show that for any countable class of value-stable environments there exists
a policy which achieves best possible value in any of the environments from the
class (i.e. is self-optimizing for this class).

Furthermore, we present some examples of environments which possess value-
stability and/or recoverability. In particular, any ergodic MDP can be easily
shown to be value-stable. A mixing-type condition which implies value-stability
is also demonstrated. In addition, we provide a construction allowing to build
examples of value-stable and/or recoverable environments which are not iso-
morphic to a finite POMDP, thus demonstrating that the class of value-stable
environments is quite general.

Finally, we consider environments which are not recoverable but still are
value-stable. In other words, we consider the question of what does it mean to
be optimal in an environment which does not “forgive” wrong actions. Even in
such cases some policies are better than others, and we identify some conditions
which are sufficient for learning a policy that is optimal from some point on.

It is important in our argument that the class of environments for which
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we seek a self-optimizing policy is countable, although the class of all value-
stable environments is uncountable. To find a set of conditions necessary and
sufficient for learning which do not rely on countability of the class is yet an
open problem. However, from a computational perspective countable classes
are sufficiently large (e.g. the class of all computable probability measures is
countable). In view of the results of the previous chapters, in particular, of the
results on sequence prediction, countable classes of environments are a natural
first step to solve the general problem of characterizing learnability.

4.1 Problem formulation

The agent framework is general enough to allow modelling nearly any kind of
(intelligent) system. In cycle k, an agent performs action yk∈Y (output) which
results in observation ok∈O and reward rk∈R, followed by cycle k+1 and so on.
We assume that the action space Y, the observation space O, and the reward
space R⊂IR are finite, w.l.g. R={0,...,rmax}. We abbreviate zk :=ykrkok∈Z :=

Y×R×O and xk=rkok∈X :=R×O. An agent is identified with a (probabilistic)
policy π. Given history z<k, the probability that agent π acts yk in cycle k is (by
definition) π(yk|z<k). Thereafter, environment µ provides (probabilistic) reward
rk and observation ok, i.e. the probability that the agent perceives xk is (by
definition) µ(xk|z<kyk). Note that policy and environment are allowed to depend
on the complete history. We do not make any MDP or POMDP assumption here,
and we do not talk about states of the environment, only about observations.
Each (policy,environment) pair (π,µ) generates an I/O sequence zπµ1 zπµ2 ... . More
formally, history zπµ1..k is a random variable with probability

P
(
zπµ1..k = z1..k

)
= π(y1) · µ(x1|y1) · ... · π(yk|z<k) · µ(xk|z<kyk).

Since value maximizing policies can always be chosen deterministic, there is no
real need to consider probabilistic policies, and henceforth we consider determin-
istic policies p. We assume that µ∈C is the true, but unknown, environment,
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and ν∈C a generic environment.
For an environment ν and a policy p define random variables (upper and

lower average value)

V (ν, p) := lim sup
m

{
1
m
rpν1..m

}
and V (ν, p) := lim inf

m

{
1
m
rpν1..m

}
where r1..m :=r1+...+rm. If there exists a constant V or a constant V such that

V (ν, p) = V a.s., or V (ν, p) = V a.s.

then we say that the upper limiting average or (respectively) lower average value
exists, and denote it by V (ν,p) :=V (or V (ν,p) :=V ). If both upper and lower
average limiting values exist and are equal then we simply say that average
limiting value exist and denote it by V (ν,p) :=V (ν,p)=V (ν,p)

An environment ν is explorable if there exists a policy pν such that V (ν,pν)

exists and V (ν,p)≤ V (ν,pν) with probability 1 for every policy p. In this case
define V ∗ν := V (ν,pν). An environment ν is upper explorable if there exists a
policy pν such that V (ν,pν) exists and V (ν,p)≤ V (ν,pν) with probability 1 for
every policy p. In this case define V ∗ν :=V (ν,pν).

A policy p is self-optimizing for a set of explorable environments C if V (ν,p)=

V ∗ν for every ν ∈ C. A policy p is upper self-optimizing for a set of explorable
environments C if V (ν,p)=V

∗
ν for every ν∈C.

In the case when we we wish to obtain the optimal average value for any
environment in the class we will speak about self-optimizing policies, whereas
if we are only interested in obtaining the upper limit of the average value then
we will speak about upper self-optimizing policies. It turns out that the latter
case is much more simple. The next two definitions present conditions on the
environments which will be shown to be sufficient to achieve the two respective
goals.

Definition 4.1 (recoverable). We call an upper explorable environment ν recov-
erable if for any history z<k such that ν(x<k|y<k)>0 there exists a policy p such
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that
P (V (ν,p)=V

∗
ν |z<k)=1.

Conditioning on the history z<k means that we take ν-conditional probabil-
ities (conditional on x<k) and first k−1 actions of the policy p are replaced by
y<k.

Recoverability means that after taking any finite sequence of (possibly sub-
optimal) actions it is still possible to obtain the same upper limiting average
value as an optimal policy would obtain. The next definition is somewhat more
complex.

Definition 4.2 (value-stable environments). An explorable environment ν is
value-stable if there exist a sequence of numbers rνi ∈ [0,rmax] and two functions
dν(k,ε) and ϕν(n,ε) such that 1

n
rν1..n→V ∗ν , dν(k,ε)=o(k),

∑∞
n=1ϕν(n,ε)<∞ for

every fixed ε, and for every k and every history z<k there exists a policy p=pz<kν

such that
P
(
rνk..k+n − r

pν
k..k+n > dν(k, ε) + nε | z<k

)
≤ ϕν(n, ε). (4.1)

First of all, this condition means that the strong law of large numbers for
rewards holds uniformly over histories z<k; the numbers rνi here can be thought
of as expected rewards of an optimal policy. Furthermore, the environment is
“forgiving” in the following sense: from any (bad) sequence of k actions it is
possible (knowing the environment) to recover up to o(k) reward loss; to recover
means to reach the level of reward obtained by the optimal policy which from
the beginning was taking only optimal actions. That is, suppose that a person
A has made k possibly suboptimal actions and after that “realized” what the
true environment was and how to act optimally in it. Suppose that a person B
was from the beginning taking only optimal actions. We want to compare the
performance of A and B on first n steps after the step k. An environment is
value stable if A can catch up with B except for o(k) gain. The numbers rνi can
be thought of as expected rewards of B; A can catch up with B up to the reward
loss dν(k,ε) with probability ϕν(n,ε), where the latter does not depend on past
actions and observations (the law of large numbers holds uniformly).
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Examples of value-stable environments will be considered in Section 4.4.

4.2 Self-optimizing policies for a set of value-stable

environments

In this section we present the main self-optimizingness result along with an
informal explanation of its proof, and a result on upper self-optimizingness,
which turns out to have much more simple conditions.

Theorem 4.3 (value-stable⇒self-optimizing). For any countable set C of value-
stable environments, there exists a policy which is self-optimizing for C.

A formal proof is given in Section 4.6; here we give some intuitive justifica-
tion. Suppose that all environments in C are deterministic. We will construct
a self-optimizing policy p as follows: Let νt be the first environment in C. The
algorithm assumes that the true environment is νt and tries to get ε-close to
its optimal value for some (small) ε. This is called an exploitation part. If it
succeeds, it does some exploration as follows. It picks the first environment νe

which has higher average asymptotic value than νt (V ∗νe >V ∗νt) and tries to get
ε-close to this value acting optimally under νe. If it can not get close to the
νe-optimal value then νe is not the true environment, and the next environment
can be picked for exploration (here we call “exploration” successive attempts to
exploit an environment which differs from the current hypothesis about the true
environment and has a higher average reward). If it can, then it switches to
exploitation of νt, exploits it until it is ε′-close to V ∗νt , ε

′<ε and switches to νe

again this time trying to get ε′-close to Vνe ; and so on. This can happen only a
finite number of times if the true environment is νt, since V ∗νt<V

∗
νe . Thus after

exploration either νt or νe is found to be inconsistent with the current history. If
it is νe then just the next environment νe such that V ∗νe>V ∗νt is picked for explo-
ration. If it is νt then the first consistent environment is picked for exploitation
(and denoted νt). This in turn can happen only a finite number of times before
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the true environment ν is picked as νt. After this, the algorithm still continues
its exploration attempts, but can always keep within εk→0 of the optimal value.
This is ensured by d(k)=o(k).

The probabilistic case is somewhat more complicated since we can not say
whether an environment is “consistent” with the current history. Instead we test
each environment for consistency as follows. Let ξ be a mixture of all environ-
ments in C. Observe that together with some fixed policy each environment µ
can be considered as a measure on Z∞. Moreover, it can be shown that (for any
fixed policy) the ratio ν(z<n)

ξ(z<n)
is bounded away from zero if ν is the true environ-

ment µ and tends to zero if ν is singular with µ (in fact, here singularity is a
probabilistic analogue of inconsistency). The exploration part of the algorithm
ensures that at least one of the environments νt and νe is singular with ν on
the current history, and a succession of tests ν(z<n)

ξ(z<n)
≥αs with αs→ 0 is used to

exclude such environments from consideration.

Upper self-optimizingness. Next we consider the task in which our goal is
more moderate. Rather than trying to find a policy which will obtain the same
average limiting value as an optimal one for any environment in a certain class,
we will try to obtain only the optimum upper limiting average. That is, we
will try to find a policy which infinitely often gets as close as desirable to the
maximum possible average value. It turns out that in this case a much simpler
condition is sufficient: recoverability instead of value-stability.

Theorem 4.4 (recoverable⇒upper self-optimizing). For any countable class C

of recoverable environments, there exists a policy which is upper self-optimizing
for C.

A formal proof can be found in Section 4.6; its idea is as follows. The upper
self-optimizing policy p to be constructed will loop through all environments in
C in such a way that each environment is tried infinitely often, and for each
environment the agent will try to get ε-close (with decreasing ε) to the upper-
limiting average value, until it either manages to do so, or a special stopping
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condition holds: ν(z<n)
ξ(z<n)

<αs, where αs is decreasing accordingly. This condition
necessarily breaks if the upper limiting average value cannot be achieved.

4.3 Non-recoverable environments

Before proceeding with examples of value-stable environments, we briefly discuss
what can be achieved if an environment does not forgive initial wrong actions,
that is, is not recoverable. It turns out that value-stability can be defined for
non-recoverable environments as well, and optimal — in a worst-case sense —
policies can be identified.

For an environment ν, a policy p and a history z<k such that ν(x<k|y<k)>0,
if there exists a constant V or a constant V such that

P (V (ν,p) = V |z<k)=1, or P (V (ν,p) = V |z<k)=1,

then we say that the upper conditional (on z<k) limiting average or (respectively)
lower conditional average value exists, and denote it by V (ν,p,z<k) := V (or
V (ν,p,z<k) := V ). If both upper and lower conditional average limiting values
exist and are equal then we say that that average conditional value exist and
denote it by V (ν,p,(z<k)) :=V (ν,p,z<k)=V (ν,p,z<k)

Call an environment ν strongly (upper) explorable if for any history z<k such
that ν(x<k|y<k)> 0 there exists a policy pz<kν such that V (ν,pz<kν ) (V (ν,pz<kν ))
exists and V (ν,p,z<k)≤ V (ν,pz<kν ,z<k) (respectively V (ν,p,z<k)≤ V (ν,pz<kν ,z<k))
with probability 1 for every policy p. In this case define V ∗ν (z<k) := V (ν,pz<kν )

(respectively V ∗ν(z<k) :=V (ν,pz<kν )).
For a strongly explorable environment ν define the worst-case optimal value

W ∗
ν := inf

k,z<k:ν(x<k>0)
V ∗ν (z<k),
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and for a strongly upper explorable ν define the worst-case upper optimal value

W
∗
ν := inf

k,z<k:ν(x<k>0)
V
∗
ν(z<k).

In words, the worst-case optimal value is the asymptotic average reward which
is attainable with certainty after any finite sequence of actions has been taken.

Note that a recoverable explorable environment is also strongly explorable.
A policy p will be called worst-case self-optimizing or worst-case upper self-

optimizing for a class of environments C if lim inf 1
m
rpν1m≥W ∗

ν , or (respectively)
lim sup 1

m
rpν1m≥W

∗
ν with probability 1 for every ν∈C, where r1..m :=r1+...+rm.

Definition 4.5 (worst-case value-stable environments). A strongly explorable
environment ν is worst-case value-stable if there exists a sequence of num-
bers rνi ∈ [0,rmax] and two functions dν(k,ε) and ϕν(n,ε) such that 1

n
rν1..n→W ∗

ν ,
dν(k,ε) = o(k),

∑∞
n=1ϕν(n,ε)<∞ for every fixed ε, and for every k and every

history z<k there exists a policy p=pz<kν such that

P
(
rνk..k+n − r

pν
k..k+n > dν(k, ε) + nε | z<k

)
≤ ϕν(n, ε). (4.2)

Note that a recoverable environment is value-stable if and only if it is worst-
case value-stable.

Worst-case value stability helps to distinguish between irreversible actions
(or “traps”) and actions which result only in a temporary loss in performance;
moreover, worst-case value-stability means that a temporary loss in performance
can only be short (sublinear).

Finally, we can establish the following result (cf. Theorems 4.3 and 4.4).

Theorem 4.6 (worst-case self-optimizing). (i) For any countable set of worst-
case value-stable environments C there exist a policy p which is worst-case
self-optimizing for C.

(ii) For any countable set of strongly upper explorable environments C there
exist a policy p which is worst-case upper self-optimizing for C.
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The proof of this theorem is analogous to the proofs of Theorems 4.3 and 4.4;
the differences are explained in Section 4.6.

4.4 Examples

In this section we illustrate the applicability of the results of the previous section
by classes of value-stable environments. These are also examples of recoverable
environments, since recoverability is strictly weaker than value-stability. In the
end of the section we also give some simple examples of recoverable but not
value-stable environments.

We first note that passive environments are value-stable. An environment
is called passive if the observations and rewards do not depend on the actions
of the agent. Sequence prediction task provides a well-studied (and perhaps
the only reasonable) class of passive environments: in this task the agent is
required to give the probability distribution of the next observation given the
previous observations. The true distribution of observations depends only on the
previous observations (and does not depend on actions and rewards). Since we
have confined ourselves to considering finite action spaces, the agent is required
to give ranges of probabilities for the next observation, where the ranges are
fixed beforehand. The reward 1 is given if all the ranges are correct and the
reward 0 is given otherwise. It is easy to check that any such environment is
value-stable with rνi ≡1, d(k,ε)≡1, ϕ(n,ε)≡0, since, knowing the distribution,
one can always start giving the correct probability ranges (this defines the policy
pν).

Obviously, there are active value stable environments too. The next propo-
sition provides some conditions on mixing rates which are sufficient for value-
stability; we do not intend to provide sharp conditions on mixing rates but rather
to illustrate the relation of value-stability with mixing conditions.

We say that a stochastic process hk, k∈IN satisfies strong α-mixing conditions
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with coefficients α(k) if (see e.g. [12])

sup
n∈IN

sup
B∈σ(h1,...,hn),C∈σ(hn+k,... )

|P (B ∩ C)− P (B)P (C)| ≤ α(k),

where σ() stands for the sigma-algebra generated by the random variables in
brackets. Loosely speaking, mixing coefficients α reflect the speed with which
the process “forgets” about its past.

Proposition 4.7 (mixing and value-stability). Suppose that an explorable en-
vironment ν is such that there exist a sequence of numbers rνi and a function
d(k) such that 1

n
rν1..n→V ∗ν , d(k)=o(k), and for each z<k there exists a policy p

such that the sequence rpνi satisfies strong α-mixing conditions with coefficients
α(k)= 1

k1+ε
for some ε>0 and

rνk..k+n − E
(
rpνk..k+n | z<k

)
≤ d(k)

for any n. Then ν is value-stable.

Proof. Using the union bound we obtain

P
(
rνk..k+n − r

pν
k..k+n > d(k) + nε

)
≤ I

(
rνk..k+n − Erpνk..k+n > d(k)

)
+ P

(∣∣rpνk..k+n − Erpνk..k+n

∣∣ > nε
)
.

The first term equals 0 by assumption and the second term for each ε can be
shown to be summable using [12, Thm.1.3]: for a sequence of uniformly bounded
zero-mean random variables ri satisfying strong α-mixing conditions the follow-
ing bound holds true for any integer q∈ [1,n/2]

P (|r1..n| > nε) ≤ ce−ε
2q/c + cqα

(
n

2q

)
for some constant c; in our case we just set q=n

ε
2+ε .

(PO)MDPs. Applicability of Theorem 4.3 and Proposition 4.7 can be illus-
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trated on (PO)MDPs. We note that self-optimizing policies for (uncountable)
classes of finite ergodic MDPs and POMDPs are known [14, 31]; the aim of the
present section is to show that value-stability is a weaker requirement than the
requirements of these models, and also to illustrate applicability of our results.
We call µ a (stationary) Markov decision process (MDP) if the probability of
perceiving xk∈X, given history z<kyk only depends on yk∈Y and xk−1. In this
case xk ∈X is called a state, X the state space. An MDP µ is called ergodic
if there exists a policy under which every state is visited infinitely often with
probability 1. An MDP with a stationary policy forms a Markov chain.

An environment is called a (finite) partially observable MDP (POMDP) if
there is a sequence of random variables sk taking values in a finite space S called
the state space, such that xk depends only on sk and yk, and sk+1 is independent
of s<k given sk. Abusing notation the sequence s1..k is called the underlying
Markov chain. A POMDP is called ergodic if there exists a policy such that the
underlying Markov chain visits each state infinitely often with probability 1.

In particular, any ergodic POMDP ν satisfies strong α-mixing conditions
with coefficients decaying exponentially fast in case there is a set H ⊂R such
that ν(ri∈H) = 1 and ν(ri= r|si=s,yi=y) 6= 0 for each y∈Y,s∈S,r∈H,i∈ IN .
Thus for any such POMDP ν we can use Proposition 4.7 with d(k,ε) a constant
function to show that ν is value-stable:

Corollary 4.8 (POMDP⇒value-stable). Suppose that a POMDP ν is ergodic
and there exists a set H⊂R such that ν(ri∈H)=1 and ν(ri=r|si=s,yi=y) 6=0

for each y ∈Y,h ∈ S,r ∈H, where S is the finite state space of the underlying
Markov chain. Then ν is value-stable.

However, it is illustrative to obtain this result for MDPs directly, and in a
slightly stronger form.

Proposition 4.9 (MDP⇒value-stable). Any finite-state ergodic MDP ν is a
value-stable environment.

Proof. Let d(k,ε)=0. Denote by µ the true environment, let z<k be the current
history and let the current state (the observation xk) of the environment be
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a∈X, where X is the set of all possible states. Observe that for an MDP there
is an optimal policy which depends only on the current state. Moreover, such a
policy is optimal for any history. Let pµ be such a policy. Let rµi be the expected
reward of pµ on step i. Let l(a,b) =min{n :xk+n= b|xk =a}. By ergodicity of µ
there exists a policy p for which El(b,a) is finite (and does not depend on k). A
policy p needs to get from the state b to one of the states visited by an optimal
policy, and then acts according to pµ. Let f(n) := nrmax

logn
. We have

P
(∣∣rµk..k+n − r

pµ
k..k+n

∣∣ > nε
)
≤ sup

a∈X
P
(∣∣E (rpµµk..k+n|xk = a

)
− rpµk..k+n

∣∣ > nε)
)

≤ sup
a,b∈X

P (l(a, b) > f(n)/rmax)

+ sup
a∈X

P
(∣∣E (rpµµk..k+n|xk = a

)
− rpµµk..k+n

∣∣ > nε− 2f(n)
∣∣∣xk = a

)
.

In the last term we have the deviation of the reward attained by the optimal
policy from its expectation. Clearly, both terms are bounded exponentially in
n.

In the examples above the function d(k,ε) is a constant and ϕ(n,ε) decays
exponentially fast. This suggests that the class of value-stable environments
stretches beyond finite (PO)MDPs. We illustrate this guess by the construction
that follows.

A general scheme for constructing value-stable environment or recover-
able environments: infinitely armed bandit. Next we present a construction of
environments which cannot be modelled as finite POMDPs but are value-stable
and/or recoverable. Consider the following environment ν. There is a countable
family C′={ζi : i∈ IN} of arms, that is, sources generating i.i.d. rewards 0 and
1 (and, say, empty observations) with some probability δi of the reward being
1. The action space Y consists of three actions Y = {g,u,d}. To get the next
reward from the current arm ζi an agent can use the action g. Let i denote the
index of the current arm. At the beginning i=0, the current arm is ζ0 and then
the agent can move between arms as follows: it can move U(i) arms “up” using
the action u (i.e. i := i+U(i)) or it can move D(i) arms “down” using the action
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d (i.e. i := i−D(i) or 0 if the result is negative). The reward for actions u and
d is 0. In all the examples below U(i)≡1, that is, the action u takes the agent
one arm up.

Clearly, ν is a POMDP with countably infinite number of states in the un-
derlying Markov chain, which (in general) is not isomorphic to a finite POMDP.

Proposition 4.10. If D(i) = i for all i∈ IN then the environment ν just con-
structed is value-stable. If D(i) ≡ 1 then ν is recoverable but not necessarily
value-stable; that is, there are choices of the probabilities δi such that ν is not
value-stable.

Proof. First we show that in either case (D(i)=i or D(i)=1) ν is explorable. Let
δ=supi∈INδi. Clearly, V (ν,p′)≤δ with probability 1 for any policy p′ . A policy p
which, knowing all the probabilities δi, achieves V (ν,p)=V (ν,p)=δ=:V ∗ν a.s., can
be easily constructed. Indeed, find a sequence ζ ′j, j∈IN , where for each j there
is i=: ij such that ζ ′j =ζi, satisfying limj→∞δij =δ. The policy p should carefully
exploit one by one the arms ζj, staying with each arm long enough to ensure that
the average reward is close to the expected reward with εj probability, where εj
quickly tends to 0, and so that switching between arms has a negligible impact
on the average reward. Thus ν can be shown to be explorable. Moreover, a
policy p just sketched can be made independent on (observation and) rewards.

Next we show if D(i) = i, that is, the action d always takes the agent down
to the first arm, then the environment in value-stable. Indeed, one can modify
the policy p (possibly allowing it to exploit each arm longer) so that on each
time step t (from some t on) we have j(t)≤

√
t, where j(t) is the number of the

current arm on step t. Thus, after any actions-perceptions history z<k one needs
about

√
k actions (one action u and enough actions d) to catch up with p. So,

(4.1) can be shown to hold with d(k,ε)=
√
k, ri the expected reward of p on step

i (since p is independent of rewards, rpνi are independent), and the rates ϕ(n,ε)

exponential in n.
To construct a non-value-stable environment with D(i)≡1, simply set δ0 =1

and δj=0 for j>0; then after taking n actions u one can only return to optimal

145



rewards with n actions (d), that is d(k) = o(n) cannot be obtained. Still it is
easy to check that recoverability is preserved, whatever the choice of δi.

In the above construction we can also allow the action d to bring the agent
d(i)<i steps down, where i is the number of the current environment ζ, according
to some (possibly randomized) function d(i), thus changing the function dν(k,ε)
and possibly making it non-constant in ε and as close as desirable to linear.

4.5 Necessity of value-stability

Now we turn to the question of how tight the conditions of value-stability are.
The following proposition shows that the requirement d(k,ε)=o(k) in (4.1) can
not be relaxed.

Proposition 4.11 (necessity of d(k,ε)=o(k)). There exists a countable family
of deterministic explorable environments C such that

• for any ν ∈C for any sequence of actions y<k there exists a policy p such
that

rνn..k+n = rpνk..k+n for all n ≥ k,

where rνi are the rewards attained by an optimal policy pν (which from the
beginning was acting optimally), but

• for any policy p there exists an environment ν∈C such that V (ν,p)<V ∗ν .

Clearly, each environment from such a class C satisfies the value stability
conditions with ϕ(n,ε)≡0 except d(k,ε)=k 6=o(k).

Proof. There are two possible actions yi ∈ {a,b}, three possible rewards ri ∈
{0,1,2} and no observations.

Construct the environment ν0 as follows: if yi=a then ri=1 and if yi=b then
ri=0 for any i∈IN .

For each i let ni denote the number of actions a taken up to step i: ni :=

#{j≤i :yj=a}. For each s>0 construct the environment νs as follows: ri(a)=1
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for any i, ri(b)=2 if the longest consecutive sequence of action b taken has length
greater than ni and ni≥s; otherwise ri(b)=0.

Suppose that there exists a policy p such that V (νi,p)=V ∗νi for each i>0 and
let the true environment be ν0. By assumption, for each s there exists such n

that
#{i ≤ n : yi = b, ri = 0} ≥ s > #{i ≤ n : yi = a, ri = 1}

which implies V (ν0,p)≤1/2<1=V ∗ν0 .

It is also easy to show that the uniformity of convergence in (4.1) can not
be dropped. That is, if in the definition of value-stability we allow the function
ϕ(n,ε) to depend additionally on the past history z<k then Theorem 4.3 does
not hold. This can be shown with the same example as constructed in the proof
of Proposition 4.11, letting d(k,ε)≡ 0 but instead allowing ϕ(n,ε,z<k) to take
values 0 and 1 according to the number of actions a taken, achieving the same
behaviour as in the example provided in the last proof.

Moreover, we show that the requirement that the class C to be learnt is
countable can not be easily withdrawn. Indeed, consider the class of all deter-
ministic passive environments in the sequence prediction setting. In this task
an agent gets the reward 1 if yi = oi+1 and the reward 0 otherwise, where the
sequence of observation oi is deterministic. Different sequences correspond to
different environments. As it was mentioned before, any such environment ν
is value-stable with dν(k,ε)≡ 1, ϕν(n,ε)≡ 0 and rνi ≡ 1. Obviously, the class of
all deterministic passive environments is not countable. Since for every policy
p there is an environment on which p errs exactly on each step, the class of all
deterministic passive environments can not be learned. Therefore, the following
statement is valid:

Proposition 4.12. There exist (uncountable) classes of value-stable environ-
ments for which there are no self-optimizing policies.

However, strictly speaking, even for countable classes value-stability is not
necessary for self-optimizingness. This can be demonstrated on the class νi :i>0

147



from the proof of Proposition 4.11. (Whereas if we add ν0 to the class a self-
optimizing policy no longer exists.) So we have the following:

Proposition 4.13. There are countable classes of not value-stable environments
for which self-optimizing policies exist.

4.6 Longer proofs

In each of the proofs, a self-optimizing (or upper self-optimizing) policy p will be
constructed. When the policy p has been defined up to a step k, an environment
µ, endowed with this policy, can be considered as a measure on Zk. We assume
this meaning when we use environments as measures on Zk (e.g. µ(z<i)).

Proof of Theorem 4.3. A self-optimizing policy p will be constructed as
follows. On each step we will have two polices: pt which exploits and pe which
explores; for each i the policy p either takes an action according to pt (p(z<i)=

pt(z<i)) or according to pe (p(z<i)=pe(z<i)), as will be specified below.
In the algorithm below, i denotes the number of the current step in the

sequence of actions-observations. Let n = 1, s = 1, and jt = je = 0. Let also
αs=2−s for s∈IN . For each environment ν, find such a sequence of real numbers
ενn that ενn→0 and

∑∞
n=1ϕν(n,ε

ν
n)≤∞.

Let ß:IN→C be such a numbering that each ν∈C has infinitely many indices.
For all i>1 define a measure ξ as follows

ξ(z<i) =
∑
ν∈C

wνν(z<i), (4.3)

where wν∈R are (any) such numbers that
∑

νwν =1 and wν>0 for all ν∈C.
Define T . On each step i let

T ≡ Ti :=

{
ν ∈ C :

ν(z<i)

ξ(z<i)
≥ αs

}
Define νt. Set νt to be the first environment in T with index greater than ß(jt).
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In case this is impossible (that is, if T is empty), increment s, (re)define T and
try again. Increment jt.
Define νe. Set νe to be the first environment with index greater than ß(je) such
that V ∗νe>V ∗νt and ν

e(z<k)>0, if such an environment exists. Otherwise proceed
one step (according to pt) and try again. Increment je.
Consistency. On each step i (re)define T . If νt /∈T , define νt, increment s and
iterate the infinite loop. (Thus s is incremented only if νt is not in T or if T is
empty.)

Start the infinite loop. Increment n.
Let δ :=(V ∗νe−V ∗νt)/2. Let ε :=εν

t

n . If ε<δ set δ=ε. Let h=je.
Prepare for exploration.

Increment h. The index h is incremented with each next attempt of exploring
νe. Each attempt will be at least h steps in length.

Let pt=py<iνt and set p=pt.
Let ih be the current step. Find k1 such that

ih
k1

V ∗νt ≤ ε/8 (4.4)

Find k2>2ih such that for all m>k2∣∣∣∣ 1

m− ih
rν

t

ih+1..m − V ∗νt
∣∣∣∣ ≤ ε/8. (4.5)

Find k3 such that
hrmax/k3<ε/8. (4.6)

Find k4 such that for all m>k4

1

m
dνe(m, ε/4) ≤ ε/8,

1

m
dνt(m, ε/8) ≤ ε/8 and

1

m
dνt(ih, ε/8) ≤ ε/8. (4.7)

Moreover, it is always possible to find such k>max{k1,k2,k3,k4} that

1

2k
rν

e

k..3k ≥
1

2k
rν

t

k..3k + δ. (4.8)
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Iterate up to the step k.
Exploration. Set pe=py<nνe . Iterate h steps according to p=pe. Iterate further
until either of the following conditions breaks

(i)
∣∣rνek..i−rpνk..i∣∣<(i−k)ε/4+dνe(k,ε/4),

(ii) i<3k.

(iii) νe∈T .

Observe that either (i) or (ii) is necessarily broken.
If on some step νt is excluded from T then the infinite loop is iterated. If after

exploration νe is not in T then redefine νe and iterate the infinite loop. If
both νt and νe are still in T then return to “Prepare for exploration” (otherwise
the loop is iterated with either νt or νe changed).
End of the infinite loop and the algorithm.

Let us show that with probability 1 the “Exploration” part is iterated only a
finite number of times in a row with the same νt and νe.

Suppose the contrary, that is, suppose that (with some non-zero probability)
the “Exploration” part is iterated infinitely often while νt,νe∈T . Observe that
(4.1) implies that the νe-probability that (i) breaks is not greater than ϕνe(i−
k,ε/4); hence by Borel-Cantelli lemma the event that (i) breaks infinitely often
has probability 0 under νe.

Suppose that (i) holds almost every time. Then (ii) should be broken except
for a finite number of times. We can use (4.4), (4.5), (4.7) and (4.8) to show that
with probability at least 1−ϕνt(k−ih,ε/4) under νt we have 1

3k
rpν

t

1..3k≥V ∗νt+ε/2.
Again using Borel-Cantelli lemma and k>2ih we obtain that the event that (ii)

breaks infinitely often has probability 0 under νt.
Thus (at least) one of the environments νt and νe is singular with respect to

the true environment ν given the described policy and current history. Denote
this environment by ν ′. It is known (see e.g. [21, Thm.26]) that if measures µ
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and ν are mutually singular then µ(x1,...,xn)
ν(x1,...,xn)

→∞ µ-a.s. Thus

ν ′(z<i)

ν(z<i)
→ 0 ν-a.s. (4.9)

Observe that (by definition of ξ) ν(z<i)
ξ(z<i)

is bounded. Hence using (4.9) we can see
that

ν ′(z<i)

ξ(z<i)
→ 0 ν-a.s.

Since s and αs are not changed during the exploration phase this implies that on
some step ν ′ will be excluded from T according to the “consistency” condition,
which contradicts the assumption. Thus the “Exploration” part is iterated only
a finite number of times in a row with the same νt and νe.

Observe that s is incremented only a finite number of times since ν′(z<i)
ξ(z<i)

is
bounded away from 0 where ν ′ is either the true environment ν or any envi-
ronment from C which is equivalent to ν on the current history. The latter
follows from the fact that ξ(z<i)

ν(z<i)
is a submartingale with bounded expectation,

and hence, by the submartingale convergence theorem (see e.g. [30]) converges
with ν-probability 1.

Let us show that from some step on ν (or an environment equivalent to it)
is always in T and selected as νt. Consider the environment νt on some step i.
If V ∗νt>V

∗
ν then νt will be excluded from T since on any optimal for νt sequence

of actions (policy) measures ν and νt are singular. If V ∗νt <V
∗
ν than νe will be

equal to ν at some point, and, after this happens sufficient number of times, νt

will be excluded from T by the “exploration” part of the algorithm, s will be
decremented and ν will be included into T . Finally, if V ∗νt =V ∗ν then either the
optimal value V ∗ν is (asymptotically) attained by the policy pt of the algorithm,
or (if pνt is suboptimal for ν) 1

i
rpν

t

1..i<V
∗
νt−ε infinitely often for some ε, which has

probability 0 under νt and consequently νt is excluded from T .
Thus, the exploration part ensures that all environments not equivalent to ν

with indices smaller than ß(ν) are removed from T and so from some step on νt

is equal to (an environment equivalent to) the true environment ν.
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We have shown in the “Exploration” part that n→∞, and so ενtn →0. Finally,
using the same argument as before (Borel-Cantelli lemma, (i) and the definition
of k) we can show that in the “exploration” and “prepare for exploration” parts of
the algorithm the average value is within ενtn of V ∗νt provided the true environment
is (equivalent to) νt. �

Proof of Theorem 4.4. Let ß : IN→C be such a numbering that each ν ∈C
has infinitely many indices. Define the measure ξ as in (4.3). The policy p acts
according to the following algorithm.

Set εs=αs=2−s for s∈IN , set j=1, s=n=1. The integer i will denote the
current step in time.

Do the following ad infinitum. Set ν to be the first environment in C with
index greater than ß(j). Find the policy pν which achieves the upper limiting
average value with probability one (such policy exists by definition of recover-
ability). Act according to pν until either∣∣∣∣1i rpν1..i − V

∗
(p, pν)

∣∣∣∣ < εn (4.10)

or
ν(z<i)

ξ(z<i)
< αs. (4.11)

Increment n, s, i.
It can be easily seen that one of the conditions necessarily breaks. Indeed,

either in the true environment the optimal upper limiting average value for the
current environment ν can be achieved by the optimal policy pν , in which case
(4.10) breaks; or it cannot be achieved, which means that ν and ξ are singular,
which implies that (4.11) will be broken (see e.g. [21, Thm.26]; cf. the same
argument in the proof of Theorem 4.3). Since ν equals the true environment
infinitely often and εn→0 we get the statement of the theorem.

Proof of Theorem 4.6 is analogous to the proofs of Theorems 4.3 and 4.4,
except for the following. Instead of the optimal average value V ∗ν and upper
optimal average value V ∗ν the values V ∗ν (z<k) and V ∗ν(z<k) should be used, and
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they should be updated after each step k.
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Chapter 5

Classification [R9, R10]

The problem of classification (or pattern recognition) consists in assigning a
(discrete-valued) label Y for an object X, on the basis of a sample of object-
label pairs (X1,Y1),...,(Xn,Yn).

Classification is perhaps the one learning problem for which the question of
learnability is well-understood; at least, this is the case under the assumption
that the examples (Xi,Yi) are independent and identically distributed. While
this assumption is very strong, it may be considered reasonable for a variety of
applications (with some notable exceptions which we will consider below). In
this setting, the question of statistical learnability is effectively solved by the
Vapnik-Chervonenkis theory; those classes of functions f can be learned (from
finite samples) that have finite VC dimension [88]. In this case, one can use
empirical risk minimization as a learning rule.

The contribution to this area presented here is two-fold. First, it is shown
that the i.i.d. requirement on the distribution of samples is redundant, in the
sense that most of the learning algorithms developed to work under this setting
can be provably used in a more general (and, as it is argued below, more natural
for many applications) setting. These results (extracted from my Ph.D. thesis)
are presented in Section 5.1.

Second, it is demonstrated that the characterization of learnability presented
by the VC theory is not quite complete, in the sense the number of samples

154



required to learn a classification function increases from linear in the VC di-
mension to arbitrary fast-growing functions, if one limits the consideration to
computable methods only. This result is presented in Section 5.2.

5.1 Relaxing the i.i.d. assumption in classification

[R10]

As it was mentioned, the majority of methods developed for solving the problem
of classification rely on the assumptions that the examples are independent and
identically distributed. This section is devoted to relaxing this assumption.

Consider the following example, that helps to motivate this problem. Sup-
pose we are trying to recognise a hand-written text. Obviously, letters in the
text are dependent (for example, we strongly expect to meet “u” after “q”). This
seemingly implies that classification methods can not be applied to this task,
which is, however, one of their classical applications.

We show that the following two assumptions on the distribution of examples
are sufficient for classification. First, that the dependence between objects is
only that between their labels and the type of object-label dependence does not
change in time. Second, the rate of occurrence of each label should keep above
some positive threshold.

These intuitive ideas lead us to the following model (to which we refer as “the
conditional model”). The labels y ∈Y are drawn according to some unknown
(but fixed) distribution over the set of all infinite sequences of labels. There can
be any type of dependence between labels; moreover, we can assume that we
are dealing with any (fixed) combinatorial sequence of labels. However, in this
sequence the rate of occurrence of each label should keep above some positive
threshold. For each label y the corresponding object x∈X is generated according
to some (unknown but fixed) probability distribution P (x|y). All the rest is as
in the i.i.d. model.

The main difference from the i.i.d. model is in that in the conditional model
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the distribution of labels is arbitrary (apart from the frequency threshold re-
quirement).

In this section we provide a tool for obtaining estimations of probability of
error of a predictor in the conditional model from an estimation of the proba-
bility of error in the i.i.d. model. The general theorems about extending results
concerning performance of a predictor to the conditional model are illustrated
on two classes of predictors. First, we extend weak consistency results concern-
ing partitioning and nearest neighbour estimates from the i.i.d. model to the
conditional model. Second, we use some results of Vapnik-Chervonenkis theory
to estimate performance in the conditional model (on finite amount of data) of
predictors minimising empirical risk, and also obtain some strong consistency
results.

These results on specific predictions methods are obtained as applications
of the following observation. The only assumption on a predictor under which
a predictor works in the new model as well as in the i.i.d. model is what we
call tolerance to data (a stability-kind condition): in any large dataset there is
no small subset which strongly changes the probability of error. This property
should also hold with respect to permutations. This assumption on a predictor
should be valid in the i.i.d. model. Thus, the results achieved in the i.i.d. model
can be extended to the conditional model; this concerns distribution–free results
as well as distribution–specific, results on the performance on finite samples as
well as asymptotic results.
Related work. Various approaches to relaxing the i.i.d. assumption in learn-
ing tasks have been proposed in the literature. Thus, in [56, 55] the the nearest
neighbour and kernel estimators are studied in the setting of regression esti-
mation with continuous regression function, under the assumption that labels
are conditionally independent given their objects, while objects form any indi-
vidual sequence (which is the opposite to what we do). There are also several
approaches in which different types of assumptions on the joint distribution of
objects and labels are made; then the authors construct a predictor or a class of
predictors, to work well under the assumptions made. Thus, in [34, 3] a general-
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isation of PAC approach to Markov chains with finite or countable state space is
presented. There is also a track of research on prediction under the assumption
that the distribution generating examples is stationary and ergodic. The basic
difference from our learning task, apart from different probabilistic assumption,
is in that we are only concerned with object-label dependence, while in predict-
ing ergodic sequences it is label-label (time series) dependence that is of primary
interest. On this task see [78, 4, 64, 66] and references therein.

5.1.1 Definitions and general results

Consider a sequence of examples (x1,y1),(x2,y2),...; where each example zi :=

(xi,yi) consists of an object xi ∈X and a label yi := η(xi) ∈Y. Here X is a
measurable space, Y :={0,1}, and η :X→Y is some deterministic function. For
simplicity, we made the assumption that the space Y is binary, but all results
easily extend to the case of any finite space Y. The notation Z := X×Y is
used for the measurable space of examples. Objects are drawn according to
some probability distribution P on X∞ (and labels are defined by η). Thus we
consider only the case of deterministically defined labels (that is, the noise-free
model).

The notation P is used for distributions onX∞ while the symbol P is reserved
for distributions on X. In the latter case P∞ denotes the i.i.d. distribution on
X∞ generated by P . Correspondingly we will use symbols E, E and E∞ for
expectations over spaces X∞ and X.

The traditional assumption about the distribution P generating objects is
that examples are independently and identically distributed (i.i.d.) according to
some distribution P on X (i.e. P=P∞).

Here we replace this assumption with the following two conditions.
First, for any n∈N and for any measurable set A⊂X

P(Xn∈A |Yn,X1,Y1,...,Xn−1,Yn−1)=P(Xn∈A |Yn) (5.1)

(i.e. some versions of conditional probabilities coincide). This condition looks
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very much like Markov condition which requires that each object depends on the
past only through its immediate predecessor. The condition (5.1) says that each
object depends on the past only through its label.

Second, for any y∈Y, for any n1,n2∈N and for any measurable set A⊂X

P(Xn1∈A |Yn1 =y)=P(Xn2∈A |Yn2 =y) (5.2)

(i.e. the process is uniform in time; (5.1) allows dependence in n).
Note that the first condition means that objects are conditionally indepen-

dent given labels (on conditional independence see [22]).

Definition 5.1. Under the conditions (5.1) and (5.2) we say that objects are
conditionally independent and identically distributed (conditionally i.i.d).

For each y∈Y denote the distributionP(Xn |Yn=y) by Py (it does not depend
on n by (5.2) ). Clearly, the distributions P0 and P1 define some distributions P
on X up to a parameter p∈ [0,1]. That is, Pp(A)=pP1(A)+(1−p)P0(A) for any
measurable set A⊂X and for each p∈ [0,1]. Thus with each distribution P satis-
fying the assumptions (5.1) and (5.2) we will associate a family of distributions
Pp, p∈ [0,1].

The assumptions of the conditional model can be also interpreted as follows.
Assume that we have some individual sequence (yn)n∈N of labels and two proba-
bility distributions P0 and P1 on X, such that there exists sets X0 and X1 in X

such that P1(X1) =P0(X0) = 1 and P0(X1) =P1(X0) = 0 (i.e. X0 and X1 define
some function η). Each example xn∈X is drawn according to the distribution
Pyn ; examples are drawn independently of each other.

A predictor is a measurable function Γn :=Γ(x1,y1,...,xn,yn,xn+1) taking val-
ues in Y (more formally, a family of functions indexed by n).

The probability of error of a predictor Γ on each step n is defined as

errn(Γ,P,z1,...,zn) :=P
{

(x,y)∈Z :y 6=Γn(z1,...,zn,x)
}

(zi, 1≤i≤n are fixed and the probability is taken over zn+1). We will sometimes
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omit some of the arguments of errn when it can cause no confusion; in particular,
we will often use a short notation P(errn(Γ,Z1,...,Zn)>ε) and an even shorter
one P(errn(Γ)>ε) in place of

P
{
z1,...,zn : errn(Γ,P,z1,...,zn)>ε

}
.

For a pair of distributions P0 and P1 and any δ∈(0,1/2) define

5δ(P0,P1,n,ε) := sup
p∈[δ,1−δ]

P∞p (errn(Γ)>ε) (5.3)

For a predictor Γ and a distribution P on X define

∆(P,n,z1,...,zn) := max
j≤κn; π:{1,...,n}→{1,...,n}

|errn(Γ,P∞,z1,...,zn)−

errn−j(Γ,P
∞,zπ(1),...,zπ(n−j))|.

Define the tolerance to data of Γ as

∆(P,n,ε) :=P n
(
∆(P,n,Z1,...,Zn)>ε

)
(5.4)

for any n∈N, any ε>0 and κn :=
√
nlogn. Furthermore, for a pair of distributions

P0 and P1 and any δ∈(0,1/2) define

∆δ(P0,P1,n,ε) := sup
p∈[δ,1−δ]

∆(Pp,n,ε).

Tolerance to data means, in effect, that in any typical large portion of data
there is no small portion that changes strongly the probability of error. This
property should also hold with respect to permutations.

We will also use another version of tolerance to data, in which instead of
removing some examples we replace them with an arbitrary sample z′j,...,z′n con-
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sistent with η:

∆̄(P,z1,...,zn) := sup
j<κn;π:{1,...,n}→{1,...,n};z′n−j ,...,z′n

|errn(Γ,P∞,z1,...,zn)−errn(Γ,P∞,ζ1,...,ζn)|,

where ζπ(i) :=zπ(i) if i<n−j and ζπ(i) :=z′i otherwise; the maximum is taken over
all z′i, n−j<i≤n consistent with η. Define

∆̄(P,n,ε) :=P n
(
∆̄(P,n,Z1,...,Zn)>ε

)
and

∆̄δ(P0,P1,n,ε) := sup
p∈[δ,1−δ]

∆̄(Pp,n,ε).

The same notational convention will be applied to ∆ and ∆̄ as to errn.
Various notions similar to tolerance to data have been studied in literature.

Perhaps first they appeared in connection with deleted or condensed estimates
(see e.g. [74]), and were later called stability (see [13, 48] for present studies of
different kinds of stability, and for extensive overviews). Naturally, such notions
arise when there is a need to study the behaviour of a predictor when some of the
training examples are removed. These notions are much similar to what we call
tolerance to data, only we are interested in the maximal deviation of probability
of error while usually it is the average or minimal deviations that are estimated.

A predictor developed to work in the off-line setting should be, loosely speak-
ing, tolerant to small changes in a training sample. The next theorem shows
under which conditions this property of a predictor can be utilised.

Theorem 5.2. Suppose that a distribution P generating examples is such that
the objects are conditionally i.i.d, i.e. P satisfies (5.1) and (5.2). Fix some
δ ∈ (0,1/2], let p(n) := 1

n
#{i≤n : Yi = 1} and Cn :=P(δ≤ p(n)≤ 1−δ) for each
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n∈N. Let also αn := 1
1−1/

√
n
. For any predictor Γ and any ε>0 we have

P(errn(Γ)>ε)≤C−1
n αn

(
5δ(P0,P1,n+κn,δε/2)

+∆δ(P0,P1,n+κn,δε/2)
)
+(1−Cn), (5.5)

and

P(errn(Γ)>ε)≤C−1
n αn

(
5δ(P0,P1,n,δε/2)

+∆̄δ(P0,P1,n,δε/2)
)
+(1−Cn). (5.6)

The proofs for this section can be found in Section 5.3.1.
The theorem says that if we know with some confidence Cn that the rate of

occurrence of each label is not less than some (small) δ, and have some bounds
on the error rate and tolerance to data of a predictor in the i.i.d. model, then
we can obtain bounds on its error rate in the conditional model.

Thus we have a tool for estimating the performance of a predictor on each
finite step n. In Section 5.1.3 we will show how this result can be applied
to predictors minimising empirical risk. However, if we are only interested in
asymptotic results the formulations can be somewhat simplified.

Consider the following asymptotic condition on the frequencies of labels.
Define p(n) := 1

n
#{i≤n :Yi = 1}. We say that the rates of occurrence of labels

are bounded from below if there exist such δ, 0<δ<1/2 that

lim
n→∞

P(p(n)∈ [δ,1−δ])=1. (5.7)

As the condition (5.7) means Cn→ 1 we can derive from Theorem 5.2 the
following corollary.

Corollary 5.3. Suppose that a distribution P satisfies (5.1), (5.2), and (5.7)
for some δ∈(0,1/2]. Let Γ be such a predictor that

lim
n→∞
5δ(P0,P1,n,ε)=0 (5.8)
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and either
lim
n→∞

∆δ(P0,P1,n,ε)=0 (5.9)

or
lim
n→∞

∆̄δ(P0,P1,n,ε)=0 (5.10)

for any ε>0. Then
E(errn(Γ,P,Z1,...,Zn))→0.

In Section 5.1.2 we show how this statement can be applied to prove weak
consistence of some classical nonparametric predictors in the conditional model.

5.1.2 Application to classical nonparametric predictors

In this section we will consider two types of classical nonparametric predictors:
partitioning and nearest neighbour classifiers.

The nearest neighbour predictor assigns to a new object xn+1 the label of its
nearest neighbour among x1,...,xn:

Γn(x1,y1,...,xn,yn,xn+1) :=yj,

where j :=argmini=1,...,n‖x−xi‖.
For i.i.d. distributions this predictor is also consistent, i.e.

E∞(errn(Γ,P∞))→0,

for any distribution P on X (see [27]).
We generalise this result as follows.

Theorem 5.4. Let Γ be the nearest neighbour classifier. Let P be some distri-
bution on X∞ satisfying (5.1), (5.2) and (5.7). Then

E(errn(Γ,P))→0.

The proofs for this section can be found in Section 5.3.2.
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A partitioning predictor on each step n partitions the object space X=Rd,
d ∈ N into disjoint cells An1 ,An2 ,... and classifies in each cell according to the
majority vote:

Γ(z1,...,zn,x) :=

{
0 if

∑n
i=1Iyi=1Ixi∈A(x)≤

∑n
i=1Iyi=0Ixi∈A(x)

1 otherwise,

where A(x) denotes the cell containing x. Define

diam(A) := sup
x,y∈A
‖x−y‖

and

N(x) :=
n∑
i=1

Ixi∈A(x).

It is a well known result (see, e.g. [26]) that a partitioning predictor is
weakly consistent, provided certain regulatory conditions on the size of cells.
More precisely, let Γ be a partitioning predictor such that diam(A(X))→ 0 in
probability and N(X)→∞ in probability. Then for any distribution P on X

E∞(errn(Γ,P∞))→0.

We generalise this result to the case of conditionally i.i.d. examples as follows.

Theorem 5.5. Let Γ be a partitioning predictor such that diam(A(X))→ 0 in
probability and N(X)→∞ in probability, for any distribution generating i.i.d.
examples. Then

E(errn(Γ,P))→0

for any distribution P on X∞ satisfying (5.1), (5.2) and (5.7).

Observe that we only generalise results concerning weak consistency of (one)
nearest neighbour and non-data-dependent partitioning rules. More general re-
sults exist (see e.g. [28]), in particular for data-dependent rules. However, we
do not aim to generalise state-of-the-art results in nonparametric classification,
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but rather to illustrate that weak consistency results can be extended to the
conditional model.

5.1.3 Application to empirical risk minimisation.

In this section we show how to estimate the performance of a predictor minimis-
ing empirical risk (over certain class of functions) using Theorem 5.2. To do this
we estimate the tolerance to data of such predictors, using some results from
Vapnik-Chervonenkis theory. For the overviews of Vapnik-Chervonenkis theory
see [88, 26].

Let X=Rd for some d∈N and let C be a class of measurable functions of the
form ϕ :X→Y={0,1}, called decision functions. For a probability distribution
P on X define err(ϕ,P ) :=P (ϕ(Xi) 6= Yi). If the examples are generated i.i.d.
according to some distribution P , the aim is to find a function ϕ from C for
which err(ϕ,P ) is minimal:

ϕP =argminϕ∈Cerr(ϕ,P ).

In the theory of empirical risk minimisation this function is approximated by
the function

ϕ∗n :=argmin
ϕ∈C

errn(ϕ)

where errn(ϕ):=
∑n

i=1Iϕ(Xi)6=Yi is the empirical error functional, based on a sam-
ple (Xi,Yi), i= 1,...,n. Thus, Γn(z1,...,zn,xn+1) :=ϕ∗n(xn+1) is a predictor min-
imising empirical risk over the class of functions C.

One of the basic results of Vapnik-Chervonenkis theory is the estimation of
the difference of probabilities of error between the best possible function in the
class (ϕP ) and the function which minimises empirical error:

P
(
errn(Γ,P∞)−err(ϕP ,P )>ε

)
≤8S(C,n)e−nε

2/128,
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where the symbol S(C,n) is used for the n-th shatter coefficient of the class C:

S(C,n) := max
A:={x1,...,xn}⊂X

#{C∩A :C∈C}.

Thus,
P (errn(Γ)>ε)≤Ierr(ϕP ,P )>ε/2+8S(C,n)e−nε

2/512.

A particularly interesting case is when the optimal rule belongs to C, i.e. when
η∈C. This situation was investigated in e.g. [87]. Obviously, in this case ϕP ∈C
and err(ϕP ,P )=0 for any P . Moreover, a better bound exists (see [88, 26])

P (errn(Γ,P )>ε)≤2S(C,n)e−nε/2.

Theorem 5.6. Let C be a class of decision functions and let Γ be a predictor
which for each n∈N minimises errn over C on the observed examples (z1,...,zn).
Fix some δ∈ (0,1/2], let p(n) := 1

n
#{i≤n :Yi = 0} and Cn :=P(δ≤ p(n)≤ 1−δ)

for each n∈N. Assume n>4/ε2 and let αn := 1
1−1/

√
n
. We have

∆(P0,P1,n,ε)≤16S(C,n)e−nε
2/512. (5.11)

(which does not depend on the distributions P0 and P1) and

P(errn(Γ,P)>ε)≤I2err(ϕP1/2 ,P1/2)>ε/2 (5.12)

+16αnC
−1
n S(C,n)e−nδ

2ε2/2048+(1−Cn).

If in addition η∈C then

∆(n,ε)≤4S(C,2n)2−nε)/8 (5.13)

and

P(errn(Γ,P)>ε)≤4αnC
−1
n S(C,n)e−nδε/16+(1−Cn). (5.14)
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Thus, if we have bounds on the VC dimension of some class of classifiers, we
can obtain bounds on the performance of predictors minimising empirical error
for the conditional model.

Next we show how strong consistency results can be achieved in the condi-
tional model. For general strong universal consistency results (with examples)
see [60, 88].

Denote the VC dimension of C by V (C):

V (C) :=max{n∈N :S(C,n)=2n}.

Using Theorem 5.6 and Borel-Cantelli lemma, we obtain the following corollary.

Corollary 5.7. Let Ck, k∈N be a sequence of classes of decision functions with
finite VC dimension such that limk→0infϕ∈Ckerr(ϕ,P )=0 for any distribution P
on X. If kn→∞ and V (Ckn )logn

n
→0 as n→∞ then

err(Γ,P)→0P−a.s.

where Γ is a predictor which in each trial n minimises empirical risk over Ckn

and P is any distribution satisfying (5.1), (5.2) and
∑∞

n=1(1−Cn)<∞.

In particular, if we use bound on the VC dimension on classes of neural
networks provided in [8] then we obtain the following corollary.

Corollary 5.8. Let Γ be a classifier that minimises the empirical error over
the class C(k), where C(k) is the class of neural net classifiers with k nodes in
the hidden layer and the threshold sigmoid, and k→∞ so that klogn/n→ 0 as
n→∞. Let P be any distribution on X∞ satisfying (5.1) and (5.2) such that∑∞

n=1(1−Cn)<∞. Then

lim
n→∞

errn(Γ)=0 P−a.s.
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5.2 Computational limitations on the statistical

characterizations of learnability in classifica-

tion [R9]

In this section we investigate the question of whether finite-step performance
guarantees can be obtained if we consider the class of computable (on some
Turing machine) classification methods. To make the problem more realistic, we
assume that the target classification function η (that maps objects to labels) is
also computable. Two definitions of target functions are considered: they are
either of the form {0,1}∞→{0,1} or {0,1}t→Y for some t (which can be different
for different target functions).

We show that there are classes Ck of functions for which the number of
examples needed to approximate the classification problem to a certain accuracy
grows faster in the VC dimension of the class than any computable function
(rather than being linear as in the statistical setting, [88]). In particular this
holds if Ck is the class of all computable functions of length not greater than k,
in which case k is a (trivial) upper bound of the VC dimension.

Importantly, the same negative result holds even if we allow the data to be
generated “actively,” e.g., by some algorithm, rather than just by some fixed
probability distribution.

To obtain this negative result we consider the task of data compression: an
impossibility result for the task of data compression allows us to estimate the
sample complexity for classification. We also analyse how tight the negative
result is, and show that for some simple computable rule (based on the nearest
neighbour estimate) the sample complexity is finite in k, under different defini-
tions of computational classification task.

Related work. In comparison to the vast literature on classification, rel-
atively little attention had been paid to the “computable” version of the task.
There is a track of research in which different concepts of computable learnabil-
ity of functions on countable domains are studied, see [44]. Another approach is
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to consider classification methods as functions computable in polynomial time,
or under other resource constraints. This approach leads to many interesting re-
sults, but it usually considers more specific settings of a learning problem, such
as learning DNFs, finite automata, etc.

It may be interesting to observe the connection of the results for classifica-
tion with another learning problem, sequence prediction. In one of its simplest
forms this task is as follows: it is required to predict the next outcome of a
deterministic sequence of symbols, where the sequence is assumed to be com-
putable (is generated by some program). There is a predictor which can solve
any such problem and the number of errors it makes is at most linear in the
length of the program generating the sequence (see, e.g. [41], Section 3.2.3).
Such a predictor is not computable. Trivially, there is no computable predictor
for all computable sequences, since for any computable predictor a computable
sequence can be constructed on which it errs at every trial, simply by revers-
ing the predictions. Thus we have linear number of errors for non-computable
predictor versus infinitely many errors for any computable one; whereas in clas-
sification, as we show, it is linear for a non-computable predictor versus growing
faster than any computable function for any computable predictor.

5.2.1 Notation and definitions

By computable functions we mean functions computable on a Turing machine
with an input tape, output tape, and some working tapes, the number of which
is supposed to be fixed throughout the section.

All computable functions can be encoded (in a canonical way) and thus the
set of computable functions can be effectively enumerated. Fix some canonical
enumeration and define the length of a computable function η as l(η):=|n| where
n is the minimal number of η in such enumeration. For an introduction to the
computability theory see, for example, [73].

From the set of all computable functions we are interested in labelling func-
tions, that is, in functions which represent classification problems. In classifi-

168



cation a labelling function is usually a function from the interval [0,1] or [0,1]d

(sometimes more general spaces are considered) to a finite space Y := {0,1}.
As we are interested in computable functions, we should consider instead total
computable functions of the form {0,1}∞→Y. However, since we require that
labelling functions are total (defined on all inputs) and computable, it can be
easily shown (e.g. with König’s lemma [51]) that any such function never scans
its input tape further than a certain position independent of the input. Thus
apparently the smallest meaningful class of computable labelling functions that
we can consider is the class of functions of the form {0,1}t→Y for some t. So,
we call a partial recursive function (or program) η a labelling function if there
exists such t=:t(η)∈N that η accepts all strings from Xt :={0,1}t and only such
strings. (It is not essential for this definition that η is not a total function. An
equivalent for our purposes definition would be as follows: a labelling function is
any total function which outputs the string 00 on all inputs except on the strings
of some length t=: t(η), on each of which it outputs either 0 or 1.)

It can be argued that this definition of a labelling function is too restrictive
to approximate well the notion of a real function. However, as we are after
negative results (for the class of all labelling functions), it is not a disadvantage.
Other possible definitions are discussed in Section 5.2.3, where we are concerned
with tightness of our negative results. In particular, all the results hold true if a
target function is any total computable function of the form {0,1}∞→Y.

Define the task of computational classification as follows. An (unknown)
labelling function η is fixed. The objects x1,...,xn ∈X are drawn according to
some distribution P on Xt(η). The labels yi are defined according to η, that is
yi :=η(xi).

A predictor is a family of functions ϕn(x1,y1,...,xn,yn,x) (indexed by n) taking
values in Y , such that for any n and any t∈N, if xi ∈Xt for each i, 1≤ i≤n,
then the marginal ϕ(x) is a total function on Xt. We will often identify ϕn with
its marginal ϕn(x) when the values of other variables are clear. Thus, given a
sample x1,y1,...,xn,yn of labelled objects of the same size t a predictor produces
a labelling function on Xt which is supposed to approximate η.
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A computable predictor is a total computable function from Xt×Y ×···×Xt×
Y ×Xt to {0,1}, where the arguments are assumed to be encoded into a single
input in a certain fixed (simple canonical) way.

We are interested in what sample size is required to approximate a labelling
function η.

For a (computable) predictor ϕ, a labelling function η and 0<ε∈R define

δn(ϕ,η,ε) :=sup
Pt

Pt

{
x1,...,xn∈Xt :

Pt
{
x∈Xt :ϕn(x1,y1,...,xn,yn,x) 6=η(x)

}
>ε
}
,

where t=t(η) and Pt ranges over all distributions on Xt (i.i.d. on Xn
t ). As usual

in PAC theory we have two probabilities here: the Pt-probability over a training
sample of size n that the Pt-probability of error of a predictor ϕ exceeds ε; then
the supremum is taken over all possible distributions Pt.

For any δ>0 define the sample complexity of η with respect to ϕ as

N(ϕ,η,δ,ε) :=min{n∈N :δn(ϕ,η,ε)≤δ}.

The number N(ϕ,η,δ,ε) is the minimal sample size required for a predictor ϕ to
achieve ε-accuracy with probability 1−δ when the (unknown) labelling function
is η, under all probability distributions.

With the use of statistical learning theory [88] we can easily derive the fol-
lowing statement

Proposition 5.9. There exists a predictor ϕ such that

N(ϕ,η,δ,ε)≤ const
ε

l(η)log
1

δ

for any labelling function η and any ε,δ>0.

Observe that the bound is linear in the length of η.
In the next section we investigate the question of whether any such bounds
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exist if we restrict our attention to computable predictors.

Proof. The predictor ϕ is defined as follows. For each sample x1,y1,...,xn,yn it
finds a shortest program η̄ such that η̄(xi) = yi for all i ≤ n. Clearly, l(η̄) ≤
l(η). Observe that the VC-dimension of the class of all computable functions
of length not greater than l(η) is bounded from above by l(η), as there are not
more than 2l(η) such functions. Moreover, ϕ minimizes empirical risk over this
class of functions. It remains to use the bound (see e.g. [26], Corollary 12.4)
supη∈CN(ϕ,η,δ,ε)≤max

(
V (C)8

ε
log 13

δ
,4
ε
log 2

δ

)
, where V (C) is the VC-dimension

of the class C.

5.2.2 Sample complexity explosion for computable

learning rules

The main result of this section is that for any computable predictor ϕ there is
no computable upper bound in terms of l(η) on the sample complexity of the
function η with respect to ϕ:

Theorem 5.10. For every computable predictor ϕ and every partial computable
function β :N→N that has infinite domain and goes to infinity, there are infinitely
many functions η, such that for some n>β(l(η))

P{x∈Xt(η) :ϕ(x1,y1,...,xn,yn,x) 6=η(x)}>0.05,

for any x1,...,xn ∈Xt(η), where yi = η(xi) and P is the uniform distribution on
Xt(η).

For example, we can take β(n)=2n, or 22n .

Corollary 5.11. For any computable predictor ϕ, any total computable function
β :N→N and any δ<1

sup
η:l(η)≤k

N(ϕ,η,δ,0.05)>β(k)
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from some k on.

Observe that there is no δ in the formulation of Theorem 5.10. Moreover,
it is not important how the objects (x1,...,xn) are generated — it can be any
individual sample. In fact, we can assume that the sample is chosen in any
manner, for example by some algorithm. This means that no computable upper
bound on sample complexity exists even for active learning algorithms.

It appears that the task of classification is closely related to another learning
task — data compression. Moreover, to prove Theorem 4.3 we need a similar
negative result for this task. Thus before proceeding with the proof of the
theorem, we introduce the task of data compression and derive a negative result
for it. We call a total computable function ψ :X→X a data compressor if it is
an injection (i.e. x1 6=x2 implies ψ(x1) 6=ψ(x2)). We say that a data compressor
compresses the string x if |ψ(x)| < |x|. Clearly, for any natural n any data
compressor compresses not more than half of the strings of size up to n.

Next we introduce Kolmogorov complexity; for fine details see [59]. The
complexity of a string x∈X with respect to a Turing machine ζ is defined as

Cζ(x)=min
p
{l(p) :ζ(p)=x},

where p ranges over all binary strings (interpreted as partial computable com-
putable functions; minimum over empty set is defined as ∞). There exists such
a machine ζ that Cζ(x)≤Cζ′(x)+cζ′ for any x and any machine ζ ′ (the constant
cζ′ depends on ζ ′ but not on x). Fix any such ζ and define the Kolmogorov
complexity of a string x∈X as

C(x) :=Cζ(x).

Clearly, C(x)≤|x|+b for any x and for some b depending only on ζ. A string
is called c-incompressible if C(x)≥|x|−c. Obviously, any data compressor can
not compresses many c-incompressible strings, for any c. However, highly com-
pressible strings (that is, strings with Kolmogorov complexity low relatively to
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their length) might be expected to be compressed well by some sensible data
compressor. The following lemma shows that this cannot be always the case, no
matter what we mean by “relatively low”.

The lemma is proven using the fact that there are no non-trivial computable
lower bounds on Kolmogorov complexity; the lemma itself can be considered as
a different formulation of this statement. The proof of the lemma is followed by
the proof of Theorem 5.10.

Lemma 5.12. For every data compressor ψ and every partial computable func-
tion γ : N→ N which has an infinite domain and goes to infinity there exist
infinitely many strings x such that C(x)≤γ(|x|) and |ψ(x)|≥|x|.

For example, we can take γ(n)=loglogn.

Proof. Suppose the contrary, i.e. that there exist a data compressor ψ and some
function γ :N→N monotonically increasing to infinity such that if C(x)≤γ(|x|)
then ψ(x)< |x| except for finitely many x. Let T be the set of all strings which
are not compressed by ψ

T :={x : |ψ(x)|≥|x|}.

Define the function τ on the set T as follows: τ(x) is the number of the
element x in T

τ(x) :=#{x′∈T :x′≤x}

for each x∈T . Obviously, the set T is infinite. Moreover, τ(x)≤x for any x∈T
(recall that we identify X and N via length-lexicographical ordering). Observe
that τ is a total computable function on T and onto N. Thus τ−1 :N→X is a
total computable function on N. Hence, for any x∈T for which γ(|x|) is defined
we have, except for finitely many x:

C(τ(x))≥C(τ−1(τ(x))−c=C(x)−c>γ(|x|)−c, (5.15)

for a constant c depending only on τ , where the first inequality follows from
computability of τ−1 and the last from the definition of T . Since τ is computable
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we also have C(τ(x))≤C(x)+c′ for some constant c′.
It is a well-known result (see e.g. [59]) that for any unbounded partial com-

putable function δ with infinite domain there are infinitely many x∈X such that
C(x)≤ δ(|x|). In particular, allowing δ(|x|) = γ(|x|)−c′−2c, we conclude that
there are infinitely many x∈T such that

C(τ(x))≤C(x)+c′≤γ(|τ(x)|)−2c≤γ(|x|)−2c,

which contradicts (5.15).

5.2.3 Different settings and tightness of the negative re-

sults

In this section we discuss how tight the conditions of the statements are and to
what extend they depend on the definitions.

Let us consider the question of whether there exists some (not necessarily
computable) total sample-complexity function

Nϕ(k,δ,ε) := sup
η:l(η)≤k

N(ϕ,η,δ,ε),

at least for some predictor ϕ.

Proposition 5.13. There exists a predictor ϕ such that Nϕ(k,δ,ε)<∞ for any
ε,δ>0 and any k∈N.

Indeed it is easy to see that the “pointwise” predictor

ϕ(x1,y1,...,xn,yn,x)=

{
yi if x=xi,1≤ i≤n
0 x /∈{x1,...,xn}

(5.16)

satisfies the conditions of the proposition.
It can be argued that probably this statement is due to our definition of a

labelling function. Next we will discuss some other variants of this definition.
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First, observe that if we define a labelling function as any total computable
function on {0,1}∗ then some labelling functions will not approximate any func-
tion on [0,1]; for example the function η+ which counts bitwise sum of its input:
η+(x):=

∑|x|
i=1xi mod 2. That is why we require a labelling function to be defined

only on Xt for some t.
Another way to define a labelling function (which perhaps makes labelling

functions most close to real functions) is as a function which accepts any infinite
binary string. Let us call an i-labelling function any total recursive function
η :Y∞→Y. That is, η is computable on a Turing machine with an input tape
on which one way infinite input is written, an output tape and possibly some
working tapes. The program η is required to halt on any input. As it was
mentioned earlier, in this case the situation essentially does not change, since
(as it is easy to show) for any i-labelling function η there exist nη∈N such that
η does not scan its input tape beyond position nη. In particular, η(x)=η(x′) as
soon as xi =x′i for any i≤nη. Moreover, it is easy to check that Theorem 5.10
holds for i-labelling functions as well. Finally, it can be easily verified that
Proposition 5.13 holds true if we consider i-labelling functions instead of labelling
functions, constructing the required predictor based on the nearest neighbour
predictor. Indeed, it suffices to replace the “pointwise” predictor in the proof of
Proposition 5.13 by the predictor ϕ, which assigns to the object x the label of
that object among x1,...,xn with whom x has longest mutual prefix (where the
prefixes are compared up to some growing horizon).

5.3 Longer proofs

5.3.1 Proofs for Section 5.1.1

Before proceeding with the proof of Theorem 5.2 we give some definitions and
supplementary facts.
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Define the conditional probabilities of error of Γ as follows

err0
n(Γ,P,z0,...,zn) :=P(Yn+1 6=Γ(z1,...,zn,Xn+1)|Yn+1 =0),

err1
n(Γ,P,z0,...,zn) :=P(Yn+1 6=Γ(z1,...,zn,Xn+1)|Yn+1 =1),

(with the same notational convention as used with the definition of errn(Γ)). In
words, for each y∈Y={0,1} we define erryn as the probability of all x∈X, such
that Γ makes an error on n’th trial, given that Yn+1 =y and fixed z1,...,zn.

For any y := (y1,y2,... )∈Y∞, define yn := (y1,...,yn) and pn(y) := 1
n
#{i≤n :

yi=0}, for n>1.
Clearly (from the assumption (5.1)) the random variables X1,...,Xn are mu-

tually conditionally independent given Y1,...,Yn, and by (5.2) they are distributed
according to PYi , 1≤ i≤n. Hence, the following statement is valid.

Lemma 5.14. Fix some n > 1 and some y ∈Y∞ such that P((Y1,....Yn+1) =

yn+1) 6=0. Then

P
(
erryn+1

n (Γ)>ε
∣∣ (Y1,...,Yn)=yn

)
=P n

p

(
erryn+1

n (Γ)>ε
∣∣ (Y1,...,Yn)=yn

)
for any p∈(0,1).

Proof of Theorem 5.2. Fix some n> 1, some y∈Y and such y1 ∈Y∞ that
δ ≤ pn(y1)≤ (1−δ) and P((Y1,...,Yn) = y1

n) 6= 0. Let p := pn(y1). We will find
bounds on P

(
errn(Γ)>ε |(Y1,...,Yn)=y1

n

)
, first in terms of ∆ and then in terms

of ∆̄.
Lemma 5.14 allows us to pass to the i.i.d. case:

P
(
erryn(Γ,X1,y

1
1,...,Xn,y

1
n,Xn+1)>ε

)
=P n

p

(
erryn(Γ,X1,y

1
1,...,Xn,y

1
n,Xn+1)>ε

)
for any y such that P(Y1 =y1

1,...,Yn=y1
n,Yn+1 =y) 6=0 (recall that we use upper-
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case letters for random variables and lower-case for fixed variables, so that the
probabilities in the above formula are labels-conditional).

Clearly, for δ ≤ p ≤ 1−δ we have errn(Γ,Pp) ≤maxy∈Y(erryn(Γ,Pp)), and if
errn(Γ,Pp)<ε then erryn(Γ,Pp)<ε/δ for each y∈Y.

Let m be such number that m−κm = n. For any y2 ∈ Y∞ such that
|mpm(y2)−mp| ≤ κm/2 there exist such mapping π : {1,...,n}→ {1,...,m} that
y2
π(i) =y1

i for any i≤n. Define random variables X ′1...X ′m as follows: X ′π(i) :=Xi

for i≤n, while the rest κm of X ′i are some random variables independent from
X1,...,Xn and from each other, and distributed according to Pp (a “ghost sam-
ple”). We have

P n
p

(
erryn(X1,y

1
1,...,Xn,y

1
n)>ε

)
=Pm

p

(
erryn(X1,y

1
1,...,Xn,y

1
n)−erryn(X ′1,y

2
1,...,X

′
m,y

2
m)

+erryn(X ′1,y
2
1,...,X

′
m,y

2
m)>ε

)
≤Pm

p

(∣∣erryn(X ′1,y
2
1,...,X

′
n,y

2
n)−erryn(X1,y

1
1,...,Xn,y

1
n)
∣∣>ε/2)

+P n
p

(
erryn(X ′1,y

2
1,...,X

′
n,y

2
n)>ε/2

)
.

Observe that y2 was chosen arbitrary (among sequences for which |mpm(y2)−
mp| ≤ κm/2) and (X1,y

1
1,...,Xny

1
n) can be obtained from (X ′1,y

2
1,...,X

′
my

2
m) by

removing at most κm elements and applying some permutation. Thus the first
term is bounded by

Pm
p

(
max

j≤κm; π:{1,...,m}→{1,...,m}
|errym(Γ,Z1,...,Zm)−

errym−j(Γ,Zπ(1),...,Zπ(m−j))|>ε/2
∣∣ |mp(m)−mp|≤κm/2

)
≤ ∆(Pp,m,δε/2)

P n
p (|mp(m)−mp|≤κm)

≤ 1

1−1/
√
m

∆(Pp,m,δε/2),
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and the second term is bounded by 1
1−1/

√
m
Pm
p (errm(Γ)>δε/2). Hence

P n
p

(
erryn(X1,y

1
1,...,Xn,y

1
n)>ε

)
≤αn

(
∆(Pp,m,δε/2)+Pm

p (errm(Γ)>δε/2)
)
. (5.17)

Next we establish a similar bound in terms of ∆̄. For any y2
n ∈Yn such

that |npn(y2)−np|≤κn/2 there exist such permutations π1,π2 of the set {1,...,n}
that y1

π1(i) = y2
π2(i) for any i≤n−δκn. Denote n−δκn by n′ and define random

variables X ′1...X ′n as follows: X ′π2(i) :=Xπ1(i) for i≤n′, while for n′<i≤n X ′i are
some “ghost” random variables independent from X1,...,Xn and from each other,
and distributed according to Pp. We have

P n
p

(
erryn(X1,y

1
1,...,Xn,y

1
n)>ε

)
≤P n+κn

p

(∣∣erryn(X ′1,y
2
1,...,X

′
n,y

2
n)−erryn(X1,y

1
1,...,Xn,y

1
n)
∣∣>ε/2)

+P n
p

(
erryn(X ′1,y

2
1,...,X

′
n,y

2
n)>ε/2

)
,

Again, as y2 was chosen arbitrary (among sequences for which |npn(y2)−np|≤
κn/2) and (X1,y

1
1,...,Xny

1
n) differs from (X ′1,y

2
1,...,X

′
ny

2
n) in at most κn elements,

up to some permutation. Thus the first term is bounded by

P n
p

(
sup

j<κn;π:{1,...,n}→{1,...,n};z′n−j ,...,z′n
|erryn(Z1,...,Zn)

−erryn(ζ1,...,ζn)|>ε/2
∣∣ |np(n)−np|≤κn/2

)
≤αn∆̄(Pp,n,δε/2),

and the second term is bounded by αnP n
p (errn(Γ)>δε/2). Hence

P n
p

(
erryn(X1,y

1
1,...,Xn,y

1
n)>ε

)
≤αn

(
∆̄(Pp,n,δε/2)+P n

p (errn(Γ)>δε/2)
)
. (5.18)
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Finally, as y1 was chosen arbitrary among sequences y∈Y∞ such that nδ≤
pn(y1)≤n(1−δ) from (5.17) and (5.18) we obtain (5.5) and (5.6). �

5.3.2 Proofs for Section 5.1.2

The first part of the proof is common for theorems 5.4 and 5.5. Let us fix some
distribution P satisfying conditions of the theorems. It is enough to show that

sup
p∈[δ,1−δ]

E∞(errn(Γ,Pp,Z1,...,Zn))→0

and
sup

p∈[δ,1−δ]
E∞(∆̄(Pp,n,Z1,...,Zn))→0

for nearest neighbour and partitioning predictor, and apply Corollary 5.3.
Observe that both predictors are symmetric, i.e. do not depend on the order

of Z1,...,Zn. Thus, for any z1,...,zn

∆̄(Pp,n,z1,...,zn)= sup
j≤κn; π:{1,...,n}→{1,...,n},z′n−j ,...,z′n

|errn(Γ,Pp,z1,...,zn)−errn(Γ,Pp,zπ(1),...,zπ(n−j),z
′
n−j,...,z

′
n)|,

where the maximum is taken over all z′i consistent with η, n−j≤ i≤n. Define
also the class-conditional versions of ∆̄:

∆̄y(Pp,n,z1,...,zn) := sup
j≤κn; π:{1,...,n}→{1,...,n},z′n−j ,...,z′n

|erryn(Γ,Pp,z1,...,zn)−erryn(Γ,Pp,zπ(1),...,zπ(n−j),z
′
n−j,...,z

′
n)|.

Note that (omitting z1,...,zn from the notation) errn(Γ,Pp) ≤ err0
n(Γ,Pp)+

err1
n(Γ,Pp) and ∆̄(Pp,n)≤∆̄0(Pp,n)+∆̄1(Pp,n). Thus, it is enough to show that

sup
p∈[δ,1−δ]

E∞(err1
n(Γ,Pp))→0 (5.19)
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and
sup

p∈[δ,1−δ]
E∞(∆̄1(Pp,n))→0. (5.20)

Observe that for each of the predictors in question the probability of error
given that the true label is 1 will not decrease if an arbitrary (possibly large)
portion of training examples labelled with ones is replaced with an arbitrary
(but consistent with η) portion of the same size of examples labelled with zeros.
Thus, for any n and any p∈ [δ,1−δ] we can decrease the number of ones in our
sample (by replacing the corresponding examples with examples from the other
class) down to (say) δ/2, not decreasing the probability of error on examples
labelled with 1. So,

E∞(err1
n(Γ,Pp))≤E∞(err1

n(Γ,Pδ/2|pn=δ/2))+Pp(pn≤δ/2), (5.21)

where as usual pn := 1
n
#{i≤n :yi=1}. Obviously, the last term (quickly) tends

to zero. Moreover, it is easy to see that

E∞(err1
n(Γ,Pδ/2)|pn=n(δ/2))

≤E∞
(
err1

n(Γ,Pδ/2)
∣∣|n(δ/2)−pn|≤κn/2

)
+E∞(∆̄1(Pδ/2,n))

≤ 1

1−1/
√
n
E∞(err1

n(Γ,Pδ/2))+E∞(∆̄1(Pδ/2,n)). (5.22)

The first term tends to zero, as it is known from the results for i.i.d. processes;
thus, to establish (5.19) we have to show that

E(∆̄1(Pp,n,Z1,...,Zn))→0 (5.23)

for any p∈(0,1).
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We will also show that (5.23) is sufficient to prove (5.20). Indeed,

∆̄1(Pp,n,z1,...,zn)≤err1
n(Γ,Pp,z1,...,zn)+

sup
j≤κn; π:{1,...,n}→{1,...,n},z′n−j ,...,z′n

err1
n(Γ,Pp,zπ(1),...,zπ(n−j),z

′
n−j,...,z

′
n)

Denote the last summand by D. Again, we observe that D will not decrease if
an arbitrary (possibly large) portion of training examples labelled with ones is
replaced with an arbitrary (but consistent with η) portion of the same size of
examples labelled with zeros. Introduce ∆̃1(Pp,n,z1,...,zn) as ∆̄1(Pp,n,z1,...,zn)

with κn in the definition replaced by 2
δ
κn. Using the same argument as in (5.21)

and (5.22) we have

E∞(D) ≤ 1

1−1/
√
n

(
E∞(∆̃1(Pδ/2,n)) +E∞(errn(Γ,Pδ/2)

)
+ Pp(pn ≤ δ/2).

Thus, (5.20) holds true if (5.23) and

E∞(∆̃1(Pp,n,Z1,...,Zn))→0. (5.24)

Finally, we will prove (5.23); it will be seen that the proof of (5.24) is analo-
gous (i.e. replacing κn by 2

δ
κn does not affect the proof). Note that

E∞(∆̄(Pp,n,Z1,...,Zn))≤Pp
(

sup
j≤κn; π:{1,...,n}→{1,...,n},z′n−j ,...,z′n∣∣errn(Γ,Pp,Z1,...,Zn) 6=errn(Γ,Pp,Zπ(1),...,Zπ(n−j),z

′
n−j,...,z

′)
∣∣),

where the maximum is taken over all z′i consistent with η, n−j≤ i≤n. The last
expression should be shown to tend to zero. This we will prove for each of the
predictors separately.

Nearest Neighbour predictor. Fix some distribution Pp, 0<p< 1 and some
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ε>0. Fix also some n∈N and define (leaving x1,...,xn implicit)

Bn(x) :=P n+1
p {t∈X : t and x have the same nearest neighbour among x1,...,xn}

and Bn :=E(Bn(X)) Note that E∞(Bn) = 1/n, where the expectation is taken
over X1,...,Xn. Define B :={(x1,...,xn)∈Xn :Bn≤1/nε} and A(x1,...,xn) :={x :

Bn(x)≤1/nε2}. Applying Markov’s inequality twice, we obtain

E∞(∆̄(Pp,n))≤E∞(∆̄(Pp,n)|(X1,...,Xn)∈B)+ε

≤E∞
(

sup
j≤κn; π:{1,...,n}→{1,...,n},z′n−j ,...,z′n

Pp
{
x : errn(Γ,Pp,Z1,...,Zn) 6=errn(Γ,Pp,Zπ(1),...,Zπ(n−j),z

′
n−j,...,z

′
n)∣∣x∈A(X1,...,Xn)

}∣∣(X1,...,Xn)∈B
)

+2ε.

(5.25)

Removing one point xi from a sample x1,...,xn we can only change the value
of Γ in the area

{x∈X :xi is the nearest neighbour of x}=Bn(xi),

while adding one point x0 to the sample we can change the value of Γ in the area

Dn(x0) :={x∈X :x0 is the nearest neighbour of x}.

It can be shown that the number of examples (among x1,...,xn) for which a point
x0 is the nearest neighbour is not greater than a constant γ which depends only
the space X (see [26], Corollary 11.1). Thus,

Dn(x0)⊂∪i=j1,...,jγBn(xi)
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for some j1,...,jγ, and so

E∞(∆̄(Pp,n))≤2ε+2(γ+1)κnE∞( max
x∈A(X1,...,Xn)

Bn(x)|(X1,...,Xn)∈B)

≤2κn
γ+1

nε2
+2ε,

which, increasing n, can be made less than 3ε. �

Partitioning predictor. For any measurable sets B⊂Xn and A⊂X define

D(B,A) :=E∞
(

sup
j≤κn; π:{1,...,n}→{1,...,n},z′n−j ,...,z′n

Pp
{
x : errn(Γ,Pp,Z1,...,Zn) 6=errn(Γ,Pp,Zπ(1),...,Zπ(n−j),z

′
n−j,...,z

′
n)∣∣x∈A}∣∣(X1,...,Xn)∈B

)
+2ε.

and D :=D(Xn,X).
Fix some distribution Pp, 0<p<1 and some ε>0. Introduce

η̂(x,X1,...,Xn) :=
1

N(x)

n∑
i=1

IYi=1IXi∈A(x)

(X1,...Xn will usually be omitted). From the consistency results for i.i.d. model
(see, e.g. [26], Theorem 6.1) we know that En+1|η̂n(X)−η(X)|→ 0 (the upper
index in En+1 indicating the number of examples it is taken over).

Thus, E|η̂n(X)−η(X)| ≤ ε4 from some n on. Fix any such n and let B :=

{(x1,...,xn) :E|η̂n(X)−η(X)| ≤ ε2}. By Markov inequality we obtain Pp(B)≥
1−ε2. For any (x1,...,xn)∈B let A(x1,...,xn) be the union of all cells Ani for which
E(|η̂n(X)−η(X)||X∈Ani )≤ε. Clearly, with x1,...,xn fixed, Pp(X∈A(x1,...,xn))≥
1−ε. Moreover, D≤D(B,A)+ε+ε2.

Fix A := (x1,...,xn) for some (x1,...,xn)∈B. Since η(x) is always either 0 or
1, to change a decision in any cell A⊂A we need to add or remove at least
(1−ε)N(A) examples, where N(A):=N(x) for any x∈A. Let N(n):=E(N(X))

and A(n) :=E(Pp(A(X)). Clearly, N(n)
nA(n)

=1 for any n, as EN(X)
n

=A(n).
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As before, using Markov inequality and shrinking A if necessary we can have
Pp(

ε2nA(X)
N(n)

≤ ε|X ∈A) = 1, Pp( ε
2nA(n)
N(X)

≤ ε|X ∈A) = 1, and D≤D(B,A)+3ε+ε2.
Thus, for all cells A⊂A we have N(A)≥εnA(n), so that the probability of error
can be changed in at most 2 κn

(1−ε)εnA(n)
cells; but the probability of each cell is

not greater than N(n)
εn

. Hence E∞(∆̄(Pp,n))≤2 κn
n(1−ε)ε2 +3ε+ε2. �

5.3.3 Proofs for Section 5.1.3

Proof of Theorem 5.6. Fix some probability distribution Pp and some n ∈N.
Let ϕ× be any decision rule ϕ ∈ C picked by Γn−κn on which (along with the
corresponding permutation) the maximum

max
j≤κn; π:{1,...,n}→{1,...,n}

|errn(Γ,z1,...,zn)−errn−j(Γ,zπ(1),...,zπ(n−j))|

is reached. We need to estimate P n(|err(ϕ∗)−err(ϕ×)|>ε).
Clearly, |errn(ϕ×)−errn(ϕ∗)| ≤ κn, as κn is the maximal number of errors

which can be made on the difference of the two samples.
Moreover,

P n
(
|err(ϕ∗n)−err(ϕ×)|>ε

)
≤P n

(
|err(ϕ∗n)− 1

n
errn(ϕ∗)|>ε/2

)
+P n

(
| 1
n

errn(ϕ×)−err(ϕ×)|>ε/2−κn/n
)

Observe that

P n(sup
ϕ∈C
| 1
n

errn(ϕ)−err(ϕ)|>ε)≤8S(C,n)e−nε
2/32, (5.26)

see [26], Theorem 12.6. Thus,

∆(Pp,n,ε)≤16S(C,n)e−n(ε/2−κn/n)2/32≤16S(C,n)e−nε
2/512

184



for n>4/ε2. So,

P(errn(Γ,P)>ε)≤Isupp∈[δ,1−δ]err(ϕPp ,Pp)>ε/2

+16αC−1
n S(C,n)e−nδ

2ε2/2048+(1−Cn).

It remains to notice that

err(ϕPp ,Pp)= inf
ϕ∈C

(perr1(ϕ,Pp)+(1−p)err0(ϕ,Pp))

≤ inf
ϕ∈C

(err1(ϕ,P1/2)+err0(ϕ,P1/2))=2err(ϕP1/2
,P1/2)

for any p∈ [0,1].
So far we have proven (5.11) and (5.12); (5.13) and (5.14) can be proven

analogously, only for the case η∈C we have

P n(sup
ϕ∈C
| 1
n

errn(ϕ)−err(ϕ)|>ε)≤S(C,n)e−nε

instead of (5.26), and err(ϕPp ,Pp)=0. �

5.3.4 Proof of Theorem 5.10

Suppose the contrary, that is that there exists such a computable predictor ϕ
and a partial computable function β : N→N such that for any except finitely
many labelling functions η for which β(l(η)) is defined and all n> β(l(η)) we
have

P{x :ϕ(x1,y1,...,xn,yn,x) 6=η(x)}≤0.05,

for some xi∈Xt(η), yi=η(xi), i∈N, where P is the uniform distribution on Xt(η).
Define ε := 0.05. We will construct a data compressor ψ which contradicts

Lemma 5.12. For each y∈X define m := |y|, t :=plogmq. Generate (lexicograph-
ically) first m strings of length t and denote them by xi, 1≤ i≤m. Define the
labelling function ηy as follows: ηy(x) = yi, if x starts with xi, where 1≤ i≤m.
Clearly, C(ηy)≥C(y)−c, where c is some universal constant capturing the above
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description. Let the distribution P be uniform on Xt.
Set n :=

√
m. Next we run the predictor ϕ on all possible tuples x =

(x1,...,xn)∈X n
t and each time count the errors that ϕ makes on all elements

of Xt:
E(x) :={x∈Xt :ϕ(x1,y

1,...,xn,y
n,x) 6=ηy(x)}.

Thus E(x) is the set of all objects on which ϕ errs after being trained on x. If
|E(x)|>εm for all x∈Xt then ψ(y) :=0y.

Otherwise proceed as follows. Fix some tuple x=(x′1,...,x
′
n) such that |E(x)|≤

εm, and let H :={x′1,...,x′n} be the unordered tuple x. Define

κi :=


e if xi∈E(x)\H
c0 if xi∈H,yi=0

c1 if xi∈H,yi=1

∗ otherwise

for 1≤i≤m. Thus, each κi is a member of a five-letter alphabet (a four-element
set) {e,c0,c1,∗}. Denote the string κ1...κm by K.

So K contains the information about the (unordered) training set and the
elements on which ϕ errs after being trained on this training set. Hence the
string K, the predictor ϕ and the order of (x′1,...,x

′
n) (which is not contained in

K) are sufficient to restore the string y. Furthermore, the n-tuple (x′1,...,x
′
n) can

be obtained from H (the un-ordered tuple) by the appropriate permutation; let
r be the number of this permutation in some fixed ordering of all n! such per-
mutations. Using Stirling’s formula, we have |r|≤2nlogn=

√
mlogm; moreover,

to encode r with some self-delimiting code we need not more than 2
√
mlogm

symbols (for m>3). Denote such an encoding of r by ρ.
Next, as there are at least (1−ε− 1√

m
)m symbols ∗ in the m-element string

K (at most εm symbols e0 and e1, and n=
√
m symbols c0 and c1), it can be

encoded by some simple binary code σ in such a way that

|σ(K)|≤ 1

2
m+8(εm+n). (5.27)
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Indeed, construct σ as follows. First replace all occurrences of the string ∗∗
with 0. Encode the rest of the symbols with any fixed 3-bit encoding such
that the code of each letter starts with 1. Clearly, σ(K) is uniquely decodable.
Moreover, it is easy to check that (5.27) is satisfied, as there are not less than
1
2
(m−2(εm+n)) occurrences of the string ∗∗. We also need to write m in a

self-delimiting way (denote it by s); clearly, |s|≤2logm.
We can define a monotone increasing function β′ with an infinite domain on

which it coincides with β. Indeed, this can be done by executing in a quasi-
parallel fashion β on all inputs and defining β′(k)=β(k) if β(k) was found and
β′(l)<β′(k) for all l on which β′ is already defined. Next we can define a function
β−1(n) with infinite domain such that β−1 goes monotonically to infinity and such
that β−1(β′(n)) =n. This can be done by running in a quasi-parallel fashion β
on all inputs m and stopping when β(m)=n with m as an output.

Finally, ψ(y)=1sρσ(K) and |ψ(y)|≤|y|, for m>210. Thus, ψ compresses any
(except finitely many) y such that n>β′(C(ηy)); i.e. such that

√
m>β′(C(ηy))≥

β′(C(y)−c). This contradicts Lemma 5.12 with γ(k) :=β−1(
√
k)+c.
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