
On sample complexity for computational
classification problems

Daniil Ryabko∗

IDSIA, Galleria 2, CH-6928 Manno-Lugano, Switzerland
daniil@ryabko.net

April 25, 2006

Keywords: pattern recognition, classification, sample complexity,
Kolmogorov complexity, computability analysis

Abstract
1 In the statistical setting of the classification (pattern recognition)

problem the number of examples required to approximate an unknown
labelling function is linear in the VC dimension of the target learning
class. In this work we consider the question of whether such bounds
exist if we restrict our attention to computable classification methods,
assuming that the unknown labelling function is also computable. We
find that in this case the number of examples required for a com-
putable method to approximate the labelling function not only is not
linear, but grows faster (in the VC dimension of the class) than any
computable function. No time or space constraints are put on the
predictors or target functions; the only resource we consider is the
training examples.

The task of classification is considered in conjunction with another
learning problem — data compression. An impossibility result for the
task of data compression allows us to estimate the sample complexity
for pattern recognition.

∗tel: +41 58 666 6660 fax: +41 58 666 6661
1This research was supported by the Swiss NSF grant 200020-107616

The main results were reported at ALT’05, [9].

1

1 Introduction

The task of classification (pattern recognition) consists in predicting an un-
known label of some observation (or object). For instance, the object can be
an image of a hand-written letter, in which case the label is the actual letter
represented by this image. Other examples include DNA sequence identifica-
tion, recognition of an illness based on a set of symptoms, speech recognition,
and many others.

More formally, the objects are drawn independently from the object space
X (usually X = [0, 1]d or Rd) according to some unknown but fixed proba-
bility distribution P on X, and labels are defined according to some function
η : X → Y , where Y = {0, 1}. The task is to construct a function ϕ : X → Y
which approximates η, i.e. for which P{x : η(x) 6= ϕ(x)} is small, where P
and η are unknown but examples x1, y1, . . . , xn, yn are given; yi := η(xi). In
such a general setting finite-step performance guarantees are not possible;
however, good error estimates can be obtained if η is known to belong to
some (small) class C. Thus, in the framework of statistical learning theory
[10] it is assumed that the function η belongs to some known class of functions
C. The number of examples required to obtain a certain level of accuracy
(or the sample complexity of C) is linear in the VC-dimension of C. How to
select a class C is left to be specified for each learning problem separately.

In this work we investigate the question of whether finite-step perfor-
mance guarantees can be obtained if we consider the class of computable (on
some Turing machine) classification methods. To make the problem more
realistic, we assume that the target function η is also computable. Two
definitions of target functions are considered: they are either of the form
{0, 1}∞ → {0, 1} or {0, 1}t → {0, 1} for some t (which can be different for
different target functions).

We show that there are classes Ck of functions for which the number
of examples needed to approximate the classification problem to a certain
accuracy grows faster in the VC dimension of the class than any computable
function (rather than being linear as in the statistical setting). In particular
this holds if Ck is the class of all computable functions of length not greater
than k, in which case k is a (trivial) upper bound of the VC dimension.

Importantly, the same negative result holds even if we allow the data to
be generated “actively”, e.g. by some algorithm, rather than just by some
fixed probability distribution.

To obtain this negative result we consider the task of data compression:

2

an impossibility result for the task of data compression allows us to estimate
the sample complexity for classification. We also analyze how tight the neg-
ative result is, and show that for some simple computable rule (based on
the nearest neighbour estimate) the sample complexity is finite in k, under
different definitions of computational patterning recognition task.

In comparison to the vast literature on classification relatively little atten-
tion had been paid to the “computable” version of the task. There is a track
of research in which different concepts of computable learnability of functions
on countable domains are studied, see [2]. A link between this framework
and statistical learning theory is proposed in [7], where it is shown that for
a uniform learnability finite VC dimension is required.

Another approach is to consider classification methods as functions com-
putable in polynomial time, or under other resource constraints. This ap-
proach leads to many interesting results, but it usually considers more specific
settings of a learning problem, such as learning DNFs, finite automata, etc.
See [4] for an introduction to this theory and for references.

It may be interesting to observe the connection of the results for pattern
recognition with another learning problem, sequence prediction. In one of its
simplest forms this task is as follows: it is required to predict the next out-
come of a deterministic sequence of symbols, where the sequence is assumed
to be computable (is generated by some program). There is a predictor
which can solve any such problem and the number of errors it makes is at
most linear in the length of the program generating the sequence (see, e.g.
[3], Section 3.2.3). Such a predictor is not computable. Trivially, there is
no computable predictor for all computable sequences, since for any com-
putable predictor a computable sequence can be constructed on which it errs
at every trial, simply by reversing the predictions. Thus we have linear num-
ber of errors for non-computable predictor versus infinitely many errors for
any computable one; whereas in pattern recognition, as we show, it is linear
for a non-computable predictor versus growing faster than any computable
function for any computable predictor.

2 Notation and definitions

A (binary) string is a member of the set {0, 1}∗ =
⋃∞

i=0{0, 1}n. The length of
a string x will be denoted by |x|, while xi is the ith element of x, 1 ≤ i ≤ |x|.
For a set A the symbols |A| and #A are used for the number of elements in

3

A. We will assume the lexicographical order on the set of strings, and when
necessary will identify {0, 1}∗ and N via this ordering, where N is the sets of
natural numbers. The symbol log is used for log2. For a real number α the
symbol pαq is the least natural number not smaller than α. By computable
functions we mean functions computable on a Turing machine with an input
tape, output tape, and some working tapes, the number of which is supposed
to be fixed throughout the paper.

All computable functions can be encoded (in a canonical way) and thus
the set of computable functions can be effectively enumerated. Fix some
canonical enumeration and define the length of a computable function η as
l(η) := |n| where n is the minimal number of η in such enumeration. For an
introduction to the computability theory see, for example, [8].

From the set of all computable functions we are interested in labelling
functions, that is, in functions which represent pattern recognition problems.
In pattern recognition a labelling function is usually a function from the
interval [0, 1] or [0, 1]d (sometimes more general spaces are considered) to a
finite space Y := {0, 1}. As we are interested in computable functions, we
should consider instead total computable functions of the form {0, 1}∞ →
{0, 1}. However, since we require that labelling functions are total (defined
on all inputs) and computable, it can be easily shown (e.g. with König’s
lemma [5]) that any such function never scans its input tape further than
a certain position independent of the input. Thus apparently the smallest
meaningful class of computable labelling functions that we can consider is
the class of functions of the form {0, 1}t → {0, 1} for some t. So, we call a
partial recursive function (or program) η a labelling function if there exists
such t =: t(η) ∈ N that η accepts all strings from Xt := {0, 1}t and only
such strings. (It is not essential for this definition that η is not a total
function. An equivalent for our purposes definition would be as follows: a
labelling function is any total function which outputs the string 00 on all
inputs except on the strings of some length t =: t(η), on each of which it
outputs either 0 or 1.)

It can be argued that this definition of a labelling function is too restric-
tive to approximate well the notion of a real function. However, as we are
after negative results (for the class of all labelling functions), it is not a dis-
advantage. Other possible definitions are discussed in Section 5, where we
are concerned with tightness of our negative results. In particular, all the
results hold true if a target function is any total computable function of the
form {0, 1}∞ → {0, 1}.

4

Define the task of computational classification as follows. An (unknown)
labelling function η is fixed. The objects x1, . . . , xn ∈ X are drawn according
to some distribution P on Xt(η). The labels yi are defined according to η,
that is yi := η(xi).

A predictor is a family of functions ϕn(x1, y1, . . . , xn, yn, x) (indexed by
n) taking values in Y , such that for any n and any t ∈ N, if xi ∈ Xt for each
i, 1 ≤ i ≤ n, then the marginal ϕ(x) is a total function on Xt. We will often
identify ϕn with its marginal ϕn(x) when the values of other variables are
clear. Thus, given a sample x1, y1, . . . , xn, yn of labelled objects of the same
size t a predictor produces a labelling function on Xt which is supposed to
approximate η.

A computable predictor is a total computable function from Xt × Y ×
· · ·×Xt×Y ×Xt to {0, 1}, where the arguments are assumed to be encoded
into a single input in a certain fixed (simple canonical) way.

3 Setup

We are interested in what sample size is required to approximate a labelling
function η.

For a (computable) predictor ϕ, a labelling function η and 0 < ε ∈ R
define

δn(ϕ, η, ε) := sup
Pt

Pt

{
x1, . . . , xn ∈ Xt :

Pt

{
x ∈ Xt : ϕn(x1, y1, . . . , xn, yn, x) 6= η(x)

}
> ε

}
,

where t = t(η) and Pt ranges over all distributions on Xt (i.i.d. on Xn
t).

As usual in PAC theory we have two probabilities here: consider the Pt-
probability over a training sample of size n that the Pt-probability of error of a
predictor ϕ exceeds ε; then take the supremum over all possible distributions
Pt.

For δ ∈ R, δ > 0 define the sample complexity of η with respect to ϕ as

N(ϕ, η, δ, ε) := min{n ∈ N : δn(ϕ, η, ε) ≤ δ}.

The number N(ϕ, η, δ, ε) is the minimal sample size required for a predictor
ϕ to achieve ε-accuracy with probability 1− δ when the (unknown) labelling
function is η, under all probability distributions.

5

With the use of statistical learning theory [10] we can easily derive the
following statement

Proposition 1. There exists a predictor ϕ such that

N(ϕ, η, δ, ε) ≤ const

ε
l(η) log

1

δ

for any labelling function η and any ε, δ > 0.

Observe that the bound is linear in the length of η.
In the next section we investigate the question of whether any such bounds

exist if we restrict our attention to computable predictors.

Proof. The predictor ϕ is defined as follows. For each sample x1, y1, . . . , xn, yn

it finds a shortest program η̄ such that η̄(xi) = yi for all i ≤ n. Clearly,
l(η̄) ≤ l(η). Observe that the VC-dimension of the class of all computable
functions of length not greater than l(η) is bounded from above by l(η),
as there are not more than 2l(η) such functions. Moreover, ϕ minimizes
empirical risk over this class of functions. It remains to use the bound (see

e.g. [1], Corollary 12.4) supη∈C N(ϕ, η, δ, ε) ≤ max
(
V (C)8

ε
log 13

δ
, 4

ε
log 2

δ

)
,

where V (C) is the VC-dimension of the class C.

4 Main results

The main result of this work is that for any computable predictor ϕ there
is no computable upper bound in terms of l(η) on the sample complexity of
the function η with respect to ϕ:

Theorem 1. For every computable predictor ϕ and every partial computable
function β : N → N that has infinite domain and goes to infinity, there are
infinitely many functions η, such that for some n > β(l(η))

P{x ∈ Xt(η) : ϕ(x1, y1, . . . , xn, yn, x) 6= η(x)} > 0.05,

for any x1, . . . , xn ∈ Xt(η), where yi = η(xi) and P is the uniform distribution
on Xt(η).

For example, we can take β(n) = 2n, or 22n
.

6

Corollary 1. For any computable predictor ϕ, any total computable function
β : N → N and any δ < 1

sup
η:l(η)≤k

N(ϕ, η, δ, 0.05) > β(k)

from some k on.

Observe that there is no δ in the formulation of Theorem 1. Moreover,
it is not important how the objects (x1, . . . , xn) are generated — it can be
any individual sample. In fact, we can assume that the sample is chosen in
any manner, for example by some algorithm. This means that no computable
upper bound on sample complexity exists even for active learning algorithms.

It appears that the task of classification is closely related to another
learning task — data compression. Moreover, to prove Theorem 1 we need a
similar negative result for this task. Thus before proceeding with the proof of
the theorem, we introduce the task of data compression and derive a negative
result for it. We call a total computable function ψ : {0, 1}∗ → {0, 1}∗ a data
compressor if it is an injection (i.e. x1 6= x2 implies ψ(x1) 6= ψ(x2)). We
say that a data compressor compresses the string x if |ψ(x)| < |x|. Clearly,
for any natural n any data compressor compresses not more than half of the
strings of size up to n.

Next we present a definition of Kolmogorov complexity; for fine details
see [11, 6]. The complexity of a string x ∈ {0, 1}∗ with respect to a Turing
machine ζ is defined as

Cζ(x) = min
p
{l(p) : ζ(p) = x},

where p ranges over all binary strings (interpreted as partial computable
computable functions; minimum over empty set is defined as ∞). There
exists such a machine ζ that Cζ(x) ≤ Cζ′(x)+ cζ′ for any x and any machine
ζ ′ (the constant cζ′ depends on ζ ′ but not on x). Fix any such ζ and define
the Kolmogorov complexity of a string x ∈ {0, 1}∗ as

C(x) := Cζ(x).

Clearly, C(x) ≤ |x|+b for any x and for some b depending only on ζ. A string
is called c-incompressible if C(x) ≥ |x| − c. Obviously, any data compres-
sor can not compresses many c-incompressible strings, for any c. However,
highly compressible strings (that is, strings with Kolmogorov complexity low

7

relatively to their length) might be expected to be compressed well by some
sensible data compressor. The following lemma shows that this cannot be
always the case, no matter what we mean by “relatively low”.

The lemma is proven using the fact that there are no non-trivial com-
putable lower bounds on Kolmogorov complexity; the lemma itself can be
considered as a different formulation of this statement. The proof of the
lemma is followed by the proof of Theorem 1.

Lemma 1. For every data compressor ψ and every partial computable func-
tion γ : N → N which has an infinite domain and goes to infinity there exist
infinitely many strings x such that C(x) ≤ γ(|x|) and |ψ(x)| ≥ |x|.

For example, we can take γ(n) = log log n.

Proof. Suppose the contrary, i.e. that there exist a data compressor ψ and
some function γ : N → N monotonically increasing to infinity such that if
C(x) ≤ γ(|x|) then ψ(x) < |x| except for finitely many x. Let T be the set
of all strings which are not compressed by ψ

T := {x : |ψ(x)| ≥ |x|}.

Define the function τ on the set T as follows: τ(x) is the number of the
element x in T

τ(x) := #{x′ ∈ T : x′ ≤ x}
for each x ∈ T . Obviously, the set T is infinite. Moreover, τ(x) ≤ x for
any x ∈ T (recall that we identify {0, 1}∗ and N via length-lexicographical
ordering). Observe that τ is a total computable function on T and onto N.
Thus τ−1 : N → {0, 1}∗ is a total computable function on N. Hence, for any
x ∈ T for which γ(|x|) is defined we have, except for finitely many x:

C(τ(x)) ≥ C(τ−1(τ(x))− c = C(x)− c > γ(|x|)− c, (1)

for a constant c depending only on τ , where the first inequality follows from
computability of τ−1 and the last from the definition of T . Since τ is com-
putable we also have C(τ(x)) ≤ C(x) + c′ for some constant c′.

It is a well-known result (see e.g. [11]) that for any unbounded partial
computable function δ with infinite domain there are infinitely many x ∈
{0, 1}∗ such that C(x) ≤ δ(|x|). In particular, allowing δ(|x|) = γ(|x|)− c′−
2c, we conclude that there are infinitely many x ∈ T such that

C(τ(x)) ≤ C(x) + c′ ≤ γ(|τ(x)|)− 2c ≤ γ(|x|)− 2c,

which contradicts (1).

8

Proof of Theorem 1. Suppose the contrary, that is that there exists such
a computable predictor ϕ and a partial computable function β : N → N such
that for any except finitely many labelling functions η for which β(l(η)) is
defined and all n > β(l(η)) we have

P{x : ϕ(x1, y1, . . . , xn, yn, x) 6= η(x)} ≤ 0.05,

for some xi ∈ Xt(η), yi = η(xi), i ∈ N, where P is the uniform distribution
on Xt(η).

Define ε := 0.05. We will construct a data compressor ψ which contradicts
Lemma 1. For each y ∈ {0, 1}∗ define m := |y|, t := plogmq. Generate
(lexicographically) first m strings of length t and denote them by xi, 1 ≤ i ≤
m. Define the labelling function ηy as follows: ηy(x) = yi, if x starts with
xi, where 1 ≤ i ≤ m. Clearly, C(ηy) ≥ C(y) − c, where c is some universal
constant capturing the above description. Let the distribution P be uniform
on Xt.

Set n :=
√
m. Next we run the predictor ϕ on all possible tuples

x = (x1, . . . , xn) ∈ X n
t and each time count the errors that ϕ makes on

all elements of Xt:

E(x) := {x ∈ Xt : ϕ(x1, y
1, . . . , xn, y

n, x) 6= ηy(x)}.

Thus E(x) is the set of all objects on which ϕ errs after being trained on x.
If |E(x)| > εm for all x ∈ Xt then ψ(y) := 0y.

Otherwise proceed as follows. Fix some tuple x = (x′1, . . . , x
′
n) such that

|E(x)| ≤ εm, and let H := {x′1, . . . , x′n} be the unordered tuple x. Define

κi :=


e if xi ∈ E(x)\H
c0 if xi ∈ H, yi = 0
c1 if xi ∈ H, yi = 1
∗ otherwise

for 1 ≤ i ≤ m. Thus, each κi is a member of a five-letter alphabet (a
four-element set) {e, c0, c1, ∗}. Denote the string κ1 . . . κm by K.

So K contains the information about the (unordered) training set and
the elements on which ϕ errs after being trained on this training set. Hence
the string K, the predictor ϕ and the order of (x′1, . . . , x

′
n) (which is not

contained in K) are sufficient to restore the string y. Furthermore, the n-
tuple (x′1, . . . , x

′
n) can be obtained from H (the un-ordered tuple) by the

9

appropriate permutation; let r be the number of this permutation in some
fixed ordering of all n! such permutations. Using Stirling’s formula, we have
|r| ≤ 2n log n =

√
m logm; moreover, to encode r with some self-delimiting

code we need not more than 2
√
m logm symbols (for m > 3). Denote such

an encoding of r by ρ.
Next, as there are at least (1 − ε − 1√

m
)m symbols ∗ in the m-element

string K (at most εm symbols e0 and e1, and n =
√
m symbols c0 and c1),

it can be encoded by some simple binary code σ in such a way that

|σ(K)| ≤ 1

2
m+ 8(εm+ n). (2)

Indeed, construct σ as follows. First replace all occurrences of the string
∗∗ with 0. Encode the rest of the symbols with any fixed 3-bit encoding
such that the code of each letter starts with 1. Clearly, σ(K) is uniquely
decodable. Moreover, it is easy to check that (2) is satisfied, as there are not
less than 1

2
(m − 2(εm + n)) occurrences of the string ∗∗. We also need to

write m in a self-delimiting way (denote it by s); clearly, |s| ≤ 2 logm.
We can define a monotone increasing function β′ with an infinite domain

on which it coincides with β. Indeed, this can be done by executing in a quasi-
parallel fashion β on all inputs and defining β′(k) = β(k) if β(k) was found
and β′(l) < β′(k) for all l on which β′ is already defined. Next we can define
a function β−1(n) with infinite domain such that β−1 goes monotonically to
infinity and such that β−1(β′(n)) = n. This can be done by running in a
quasi-parallel fashion β on all inputs m and stopping when β(m) = n with
m as an output.

Finally, ψ(y) = 1sρσ(K) and |ψ(y)| ≤ |y|, for m > 210. Thus, ψ com-
presses any (except finitely many) y such that n > β′(C(ηy)); i.e. such
that

√
m > β′(C(ηy)) ≥ β′(C(y) − c). This contradicts Lemma 1 with

γ(k) := β−1(
√
k) + c.

5 Different settings and tightness of the neg-

ative results

In this section we discuss how tight the conditions of the statements are and
to what extend they depend on the definitions.

10

Let us consider the question of whether there exists some (not necessarily
computable) total sample-complexity function

Nϕ(k, δ, ε) := sup
η:l(η)≤k

N(ϕ, η, δ, ε),

at least for some predictor ϕ.

Proposition 2. There exists a predictor ϕ such that Nϕ(k, δ, ε) <∞ for any
ε, δ > 0 and any k ∈ N.

Indeed it is easy to see that the “pointwise” predictor

ϕ(x1, y1, . . . , xn, yn, x) =

{
yi if x = xi, 1 ≤ i ≤ n
0 x /∈ {x1, . . . , xn}

(3)

satisfies the conditions of the proposition.
It can be argued that probably this statement is due to our definition of a

labelling function. Next we will discuss some other variants of this definition.
First, observe that if we define a labelling function as any total com-

putable function on {0, 1}∗ then some labelling functions will not approxi-
mate any function on [0, 1]; for example the function η+ which counts bitwise

sum of its input: η+(x) :=
∑|x|

i=1 xi mod 2. That is why we require a labelling
function to be defined only on Xt for some t.

Another way to define a labelling function (which perhaps makes labelling
functions most close to real functions) is as a function which accepts any
infinite binary string. Let us call an i-labelling function any total recursive
function η : {0, 1}∞ → {0, 1}. That is, η is computable on a Turing machine
with an input tape on which one way infinite input is written, an output tape
and possibly some working tapes. The program η is required to halt on any
input. As it was mentioned earlier, in this case the situation essentially does
not change, since (as it is easy to show) for any i-labelling function η there
exist nη ∈ N such that η does not scan its input tape beyond position nη. In
particular, η(x) = η(x′) as soon as xi = x′i for any i ≤ nη. Moreover, it is
easy to check that Theorem 1 holds for i-labelling functions as well. Finally,
it can be easily verified that Proposition 2 holds true if we consider i-labelling
functions instead of labelling functions, constructing the required predictor
based on the nearest neighbour predictor. Indeed, it suffices to replace the
“pointwise” predictor in the proof of Proposition 2 by the predictor ϕ, which
assigns to the object x the label of that object among x1, . . . , xn with whom
x has longest mutual prefix (where the prefixes are compared up to some
growing horizon).

11

6 Discussion

The main result of the paper can be interpreted as that the task of compu-
tational classification is not feasible if the target labelling function is (only)
known to be computable. In fact this means that the task of finding such a
function η in a (finite) class C that η fits the given data can be algorithmically
a very complex problem. It is also important to note here that we did not
impose any resource constraints on the computation.

Perhaps the proposed approach, that is, the analysis of complexity of a
computable learning problem as related to the complexity of the solution,
can be applied to learning problems other than classification and data com-
pression. In the present paper the complexity of a learning problem means
sample size complexity, whereas complexity of the solution is the length (or
Kolmogorov complexity) of the program which describes it. It can be con-
jectured that whatever a learning problem is, its complexity in terms of the
complexity of a solution is very high, if both complexities are reasonably
defined. This further supports the view that “universal” learners are not
feasible and each specific learning problem should be solved by a specially
designed algorithm.

References

[1] L. Devroye, L. Györfi, G. Lugosi, A probabilistic theory of pattern recog-
nition. New York: Springer, 1996.

[2] S. Jain, D. Osherson, J. Royer, and A. Sharma. Systems That Learn:
An Introduction to Learning Theory, 2nd edition. The MIT Press, Cam-
bridge, MA, 1999.

[3] M. Hutter, Universal Artificial Intelligence: Sequential Decisions based
on Algorithmic Probability, Springer, 2004.

[4] M. Kearns and U. Vazirani. An Introduction to Computational Learning
Theory The MIT Press, Cambridge, Massachusetts, 1994.

[5] S. Kleene, Mathematical Logic, New York: Wiley, 1967.

[6] M. Li, P. Vitányi. An introduction to Kolmogorov complexity and its
applications. Second edition, Springer, 1997.

12

[7] W. Menzel, F. Stephan. Inductive versus approximative learning. In:
Perspectives of adaptivity and learning, edited by R. Kuehn et al., pp.
187–209, Springer, 2003.

[8] H. Rogers. Theory of recursive functions and effective computability,
McGraw-Hill Book Company, 1967.

[9] D. Ryabko. On computability of pattern recognition problems, in Pro-
ceedings of The 16th International Conference on Algorithmic Learning
Theory Singapore, pp. 148–156, 2005

[10] V. Vapnik, Statistical Learning Theory: New York etc.: John Wiley &
Sons, Inc. 1998

[11] N. Vereshchagin, A. Shen and V. Uspensky. Lecture
Notes on Kolmogorov Complexity, 2004, Unpublished,
http://lpcs.math.msu.su/∼ver/kolm-book .

13

